首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   2篇
  国内免费   4篇
  2019年   1篇
  2017年   1篇
  2016年   4篇
  2015年   4篇
  2014年   2篇
  2013年   6篇
  2010年   2篇
  2009年   3篇
  2007年   3篇
  2006年   4篇
  2005年   5篇
  2004年   5篇
  2003年   4篇
  2002年   1篇
  2001年   10篇
  2000年   2篇
  1999年   6篇
  1998年   5篇
  1995年   3篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
排序方式: 共有74条查询结果,搜索用时 15 毫秒
21.
对典型垃圾填埋覆盖土进行CH4原位富集和三氯乙烯(TCE)驯化,研究了其生物氧化能力和微生物群落结构变化.覆盖土CH4氧化速率为0.20~0.87 μmol·g-1 soil·h-1,TCE降解速率为0.009~0.013 mg·L-1·h-1,其中山东垃圾填埋场覆盖土土样甲烷氧化活性高于广东、上海和重庆地区土样.通过Illumina MiSeq测序技术分析了α多样性和驯化前后微生物菌群结构变化规律.结果表明: 在所有被注释的操作分类单元聚类结果中,细菌OTUs分配为39个门,85个纲,562个属,富集驯化后变形杆菌门、拟杆菌门、绿弯菌门和酸杆菌门仍为各土样的优势菌群,所占比例之和高于77.4%;γ-变形杆菌纲、β--变形杆菌纲、α-变形杆菌纲、放线菌纲和酸杆菌纲所占比例之和高于26.5%.嗜甲基菌属、厌氧绳菌属、节杆菌属和假单胞菌属经TCE驯化后,其相对丰度呈增加趋势.表明在覆盖土氯代烃生物降解过程中,除了被广泛认可的甲烷氧化菌异养共代谢机制以外,还存在非甲烷共代谢机制和氯代烃自养降解机制.  相似文献   
22.
Co-metabolic degradation of trichloroethylene (TCE) by Pseudomonas putida F1 was investigated in a novel bioreactor with a fibrous bed. A pseudo-first-order rate constant for TCE degradation was 1.4 h–1 for 2.4 to 100 mg TCE l–1. Competitive inhibition of toluene on TCE removal could be prevented in this bioreactor. 90% TCE was removed over 4 h when 95 mg toluene l–1 was presented simultaneously.  相似文献   
23.
Molecular ecological approaches have detected diverse microorganisms that occur in response to pollution and bioremediation; however, most of these organisms have not been isolated, and their physiological traits are poorly understood. One important objective in current bioremediation studies would therefore be an assessment of the physiology and functions of the diverse microbial population at a polluted site. Among the parameters relating to the diversity of the microbial catabolic potential, e.g., substrate specificity, inducer specificity, number of catabolic routes and kinetics of catabolic enzymes, our studies have focused on the kinetic diversity of phenol-degrading bacteria. In one example, a kinetic analysis allowed functionally important phenol-degrading bacteria to be identified in activated sludge; this information could be used to improve the performance of phenol-degrading activated sludge. In an analysis of phenol-degrading bacteria present in trichloroethylene (TCE)-contaminated aquifer soil, the kinetic data could be linked to group-specific monitoring of their phenol-hydroxylase genes. The results have suggested that one group of phenol-degrading bacteria can effectively contribute to TCE bioremediation, while other groups work poorly. Based on this information, we have succeeded in developing a high-performance TCE-degrading bioreactor. We suggest that a careful analysis of the diversity of microbial catabolic potential, particularly of the kinetic traits, may facilitate the development of new bioremediation strategies. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
24.
Innovative in situ treatment technologies show promise as efficient methods for remediating the nation's waste sites. Unfortunately, due to various barriers, some innovative technologies that have been demonstrated at full scale are never transferred for commercial application. The National Research Council (NRC) has recently presented recommendations on how to overcome these barriers (NRC, 1997). User-friendly screening software, which specifically addresses each of the NRC recommendations, is presented for use by site managers to determine the appropriateness of an innovative remediation technology, in situ aerobic cometabolic bioremediation, to clean up a contaminated site with specified hydrogeologic and contaminant characteristics. The software estimates the performance and cost of the technology at the site. Software, such as the one presented, can be used to aid in the transfer and implementation of innovative remediation technologies.  相似文献   
25.
Cometabolic degradation of trichloroethylene in a bubble column bioscrubber   总被引:1,自引:0,他引:1  
A bubble column bioreactor was used as bioscrubber to carry out a feasibility study for the cometabolic degradation of trichloroethylene (TCE). Phenol was used as cosubstrate and inducer. The bioreactor was operated like a conventional chemostat with regard to the cosubstrate and low dilution rates were used to minimize the liquid outflow. TCE degradation measurements were carried out using superficial gas velocities between 0.47and 4.07 cm s(-1) and TCE gas phase loads between 0.07 and 0.40 mg L(-1) Depending on the superficial gas velocity used, degrees of conversion between 30% and 80% were obtained. A simplified reactor model using plug flow for the gas phase, mixed flow for the liquid phase, and pseudo first order reaction kinetics for the conversionof TCE was established. The model is able to give a reasonable approximation of the experimental data. TCE degradation at the used experimental conditions is mainly limited by reaction rate rather than by mass transfer rate. The model can be used to calculate the reactor volume and the biomass concentration for a required conversion. (c) 1995 John Wiley & Sons Inc.  相似文献   
26.
A shallow water table aquifer under the U.S. Coast Guard Air Station at Traverse City, MI, has acclimated to the aerobic and anaerobic transformation of monoaromatic hydrocarbons (BTX) released from an aviation gasoline spill. The aquifer also exhibits reductive dechlorination of a chlorinated solvent spill adjacent to the aviation gasoline spill. The groundwater is buffered near neutrality. The aviation gasoline plume is methanogenic and the aquifer contains enough iron minerals to support significant iron solubilization. Field evidence of both aerobic and anaerobic biotransformation of monoaromatics was confirmed by laboratory studies of aquifer material obtained from the site. In the laboratory studies, the removal of the monoaromatics in the anaerobic material was rapid and compared favorably with removal in aerobic material. The kinetics of anaerobic removal of monoaromatics in the laboratory were similar to the kinetics at field scale in the aquifer. Biotransformation of the chlorinated solvents was not observed until late in the study, when daughter products from reductive dechlorination of the chlorinated solvents were identified by GC/MS.  相似文献   
27.
The potential for trichloroethylene (TCE) and perchloroethylene (PERC) to induce developmental toxicity was investigated in Crl:CD (SD) rats whole-body exposed to target concentrations of 0, 50, 150 or 600 ppm TCE or 0, 75, 250 or 600 ppm PERC for six hours/day, seven days/week on gestation day (GD) 6-20 and 6-19, respectively. Actual chamber concentrations were essentially identical to target with the exception of the low PERC exposure level, which was 65 ppm. The highest exposure levels exceeded the limit concentration (2 mg/L) specified in the applicable test guidelines. Maternal necropsies were performed the day following the last exposure. Dams exposed to 600 ppm TCE exhibited maternal toxicity, as evidenced by decreased body weight gain (22% less than control) during GD 6-9. There were no maternal effects at 50 or 150 ppm TCE and no indications of developmental toxicity (including heart defects or other terata) at any exposure level tested. Therefore, the TCE NOEC for maternal toxicity was 150 ppm, whereas the embryo/fetal NOEC was 600 ppm. Maternal responses to PERC were limited to slight, but statistically significant reductions in body weight gain and feed consumption during the first 3 days of exposure to 600 ppm, resulting in a maternal NOEC of 250 ppm. Developmental effects at 600 ppm consisted of reduced gravid uterus, placental and fetal body weights, and decreased ossification of thoracic vertebral centra. Developmental effects at 250 ppm were of minimal toxicological significance, being limited to minor decreases in fetal and placental weight. There were no developmental effects at 65 ppm.  相似文献   
28.
29.
The cometabolic degradation of trichloroethylene (TCE) by Pseudomonas putida F1 (strain ATCC 700007) at different concentrations was studied in single- and two-phase systems using 2-undecanone as the second organic phase. Toluene vapors were used as the primary growth substrate for Pseudomonas putida F1. The effects of the biomass concentration and the phase ratio on the biodegradation process were investigated. The best biomass concentration and the most suitable phase ratio were found to be 0.462 and 0.025 g/L (vorg/vaq), respectively. In the single-phase system, 36.5 mg/L TCE was degraded completely in 15 hours and only 78% of 55 mg/L TCE was degraded in 27 hours, while in the two-phase system 55 mg/L TCE was degraded completely in 14 hours. The use of the two-phase system not only decreased the biodegradation time of TCE but also prevented the inhibition effect of high concentrations of TCE on the microbial biomass.  相似文献   
30.
Aminoacylase 3 (AA3) deacetylates N-acetyl-aromatic amino acids and mercapturic acids including N-acetyl-1,2-dichlorovinyl-L-cysteine (Ac-DCVC), a metabolite of a xenobiotic trichloroethylene. Previous studies did not demonstrate metal-dependence of AA3 despite a high homology with a Zn2+-metalloenzyme aminoacylase 2 (AA2). A 3D model of mouse AA3 was created based on homology with AA2. The model showed a putative metal binding site formed by His21, Glu24 and His116, and Arg63, Asp68, Asn70, Arg71, Glu177 and Tyr287 potentially involved in catalysis/substrate binding. The mutation of each of these residues to alanine inactivated AA3 except Asn70 and Arg71, therefore the corrected 3D model of mouse AA3 was created. Wild type (wt) mouse AA3 expressed in E. coli contained ∼ 0.35 zinc atoms per monomer. Incubation with Co2+ and Ni2+ activated wt-AA3. In the cobalt-activated AA3 zinc was replaced with cobalt. Metal removal completely inactivated wt-AA3, whereas addition of Zn2+, Mn2+ or Fe2+ restored initial activity. Co2+ and to a lesser extent Ni2+ increased activity several times in comparison with intact wt-AA3. Co2+ drastically increased the rate of deacetylation of Ac-DCVC and significantly increased the toxicity of Ac-DCVC in the HEK293T cells expressing wt-AA3. The results indicate that AA3 is a metalloenzyme significantly activated by Co2+ and Ni2+.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号