全文获取类型
收费全文 | 318篇 |
免费 | 26篇 |
国内免费 | 41篇 |
专业分类
385篇 |
出版年
2023年 | 4篇 |
2022年 | 6篇 |
2021年 | 8篇 |
2020年 | 12篇 |
2019年 | 20篇 |
2018年 | 13篇 |
2017年 | 12篇 |
2016年 | 10篇 |
2015年 | 10篇 |
2014年 | 9篇 |
2013年 | 30篇 |
2012年 | 5篇 |
2011年 | 10篇 |
2010年 | 9篇 |
2009年 | 13篇 |
2008年 | 18篇 |
2007年 | 27篇 |
2006年 | 22篇 |
2005年 | 22篇 |
2004年 | 16篇 |
2003年 | 11篇 |
2002年 | 9篇 |
2001年 | 14篇 |
2000年 | 13篇 |
1999年 | 7篇 |
1998年 | 11篇 |
1997年 | 7篇 |
1996年 | 3篇 |
1995年 | 3篇 |
1994年 | 3篇 |
1993年 | 1篇 |
1992年 | 1篇 |
1990年 | 2篇 |
1989年 | 1篇 |
1988年 | 1篇 |
1987年 | 1篇 |
1986年 | 5篇 |
1985年 | 5篇 |
1984年 | 4篇 |
1983年 | 1篇 |
1982年 | 2篇 |
1981年 | 1篇 |
1980年 | 1篇 |
1979年 | 2篇 |
排序方式: 共有385条查询结果,搜索用时 15 毫秒
81.
Tuleva B Christova N Cohen R Stoev G Stoineva I 《Journal of applied microbiology》2008,104(6):1703-1710
Aims: To isolate a biosurfactant-producing bacterial strain and to identify and characterize the chemical structure and properties of its biosurfactants.
Methods and Results: The bacterium Rhodococcus wratislaviensis BN38, isolated from soil, was found to produce glycolipid biosurfactants when grown on 2% n -hexadecane. The glycolipids were isolated by chromatography on silica gel columns and their structures elucidated using a combination of multidimensional NMR and ESI-MS/MS techniques. The main product was identified as 2,3,4,2'-trehalose tetraester with molecular mass of 876 g mol−1 . It was also noted that the biosurfactant was produced under nitrogen-limiting conditions and could not be synthesized from water-soluble substrates. The purified product showed extremely high surface-active properties.
Conclusions: The glycolipid biosurfactant produced by the alkanothrophic strain R. wratislaviensis BN38 was characterized to be 2,3,4,2'-trehalose tetraester which exhibited high surfactant activities.
Significance and Impact of the Study: Strain BN38 of R. wratislaviensis is a potential candidate for use in bioremediation applications or in biosurfactant exploration. 相似文献
Methods and Results: The bacterium Rhodococcus wratislaviensis BN38, isolated from soil, was found to produce glycolipid biosurfactants when grown on 2% n -hexadecane. The glycolipids were isolated by chromatography on silica gel columns and their structures elucidated using a combination of multidimensional NMR and ESI-MS/MS techniques. The main product was identified as 2,3,4,2'-trehalose tetraester with molecular mass of 876 g mol
Conclusions: The glycolipid biosurfactant produced by the alkanothrophic strain R. wratislaviensis BN38 was characterized to be 2,3,4,2'-trehalose tetraester which exhibited high surfactant activities.
Significance and Impact of the Study: Strain BN38 of R. wratislaviensis is a potential candidate for use in bioremediation applications or in biosurfactant exploration. 相似文献
82.
83.
Trehalose-6-phosphate synthase, catalyzing the reaction between UDP-glucose and glucose 6-phosphate and forming trehalose 6-phosphate, was isolated and partially purified (30-fold) from the phototrophic, haloalkaliphilic bacteriumEctothiorhodospira halochloris. The activity is stabilized by 20mM MgCl2, 50mM NaCe and 2M glycine betaine. The molecular weight was 63000.The enriched enzyme had a MgCl2 optimum at 3–6mM, a pH optimum at 7.5 (in Tris-HCl buffer) and a temperature optimum at 50°C. The Km-values were 1.5×10–3M for UDP-glucose and 2×10–3M for glucose 6-phosphate. The enzyme showed a salinity dependence with optimal concentrations between 100 and 300mM salt. Higher concentrations of salt resulted in a decrease in activity. In the presence of inhibitory salt concentrations the compatible solute glycine betaine had a protective effect with a maximum between 0.5 and 2.0M. 相似文献
84.
Phosphorolysis of α,α-trehalose catalyzed by trehalose phosphorylase from the basidiomycete Schizophyllum commune proceeds via net retention of anomeric configuration and yields α-
-glucose 1-phosphate and α-
-glucose as the products. In reverse reaction, only the α-anomers of
-glucose 1-phosphate and
-glucose are utilized as glucosyl donor and acceptor, respectively, and give exclusively the α,α-product. Trehalose phosphorylase converts α-
-glucose 1-fluoride and phosphate into α-
-glucose 1-phosphate, a reaction requiring the stereospecific protonation of the glucosyl fluoride by a Brønsted acid. The results are discussed with regard to a plausible reaction mechanism of fungal trehalose phosphorylase. 相似文献
85.
The isolation of high-trehalose-accumulating mutant A11 from Saccharomycopsis fibuligera sdu has been previously described. In this paper, accumulation of trehalose under various stress conditions in S. fibuligera A11 was investigated. Neither activation of trehalose-6-phosphate synthase (SfTps1) nor change in trehalose content was observed under stress exposure of S. fibuligera A11 cells. A fragment of the Sftps1 gene in this strain was also cloned by degenerate PCR using the CoDeHOP strategy and multiply-aligned Tps1 sequences. This sequence allowed us to investigate the expression of the Sftps1 gene, which was also kept constant under the various stress conditions. Altogether, these results indicate that trehalose metabolism in S. fibuligera A11 in response to stress conditions clearly differs from that of Saccharomyces cerevisiae and most other fungi. The expression of the Sftps1 gene was not responsive to different stress treatments. 相似文献
86.
Effects of trehalose on stress tolerance and biocontrol efficacy of Cryptococcus laurentii 总被引:1,自引:0,他引:1
AIMS: To investigate the effects of internal trehalose on viability and biocontrol efficacy of antagonistic yeast Cryptococcus laurentii under stresses of low temperature (LT), controlled atmosphere (CA) and freeze drying. METHODS AND RESULTS: The content of trehalose in C. laurentii was increased by culturing the yeast in trehalose-containing medium. Compared with yeast cells with low trehalose level, the yeast cells with high level of internal trehalose not only obtained higher viability, but also showed higher population and better biocontrol efficacy against Penicillium expansum on apple fruit both at 1 degrees C and in CA condition (5% O(2), 5% CO(2), 1 degrees C). After freeze drying, survival of the yeast with high trehalose level was markedly increased when stored at 25 degrees C for 0, 15 and 30 days. Meanwhile, high integrity of plasma membrane was detected in the freeze-dried yeast with high trehalose level by propidium iodide staining. CONCLUSIONS: Induced accumulation of internal trehalose could improve viability and biocontrol efficacy of C. laurentii under stresses of LT and CA. Moreover, survival of the yeast was also increased as internal trehalose accumulation after freeze drying, and one of the reasons might be that trehalose gave an effective protection to plasma membrane. SIGNIFICANCE AND IMPACT OF THE STUDY: The results of this experiment show a promising way to improve the biocontrol performance of antagonistic yeasts under the commercial conditions. 相似文献
87.
Scirè A Marabotti A Aurilia V Staiano M Ringhieri P Iozzino L Crescenzo R Tanfani F D'Auria S 《Proteins》2008,73(4):839-850
The trehalose/maltose-binding protein (MalE1) is one component of trehalose and maltose uptake system in the thermophilic organism Thermus thermophilus. MalE1 is a monomeric 48 kDa protein predominantly organized in alpha-helix conformation with a minor content of beta-structure. In this work, we used Fourier-infrared spectroscopy and in silico methodologies for investigating the structural stability properties of MalE1. The protein was studied in the absence and in the presence of maltose as well as in the absence and in the presence of SDS at different p(2)H values (neutral p(2)H and at p(2)H 9.8). In the absence of SDS, the results pointed out a high thermostability of the MalE1 alpha-helices, maintained also at basic p(2)H values. However, the obtained data also showed that at high temperatures the MalE1 beta-sheets underwent to structural rearrangements that were totally reversible when the temperature was lowered. At room temperature, the addition of SDS to the protein solution slightly modified the MalE1 secondary structure content by decreasing the protein thermostability. The infrared data, corroborated by molecular dynamics simulation experiments performed on the structure of MalE1, indicated that the protein hydrophobic interactions have an important role in the MalE1 high thermostability. Finally, the results obtained on MalE1 are also discussed in comparison with the data on similar thermostable proteins already studied in our laboratories. 相似文献
88.
Water and carbohydrate levels at different developmental stages and dynamics in hibernating pupae of Pieris melete (Lepidoptera: Pieridae) 下载免费PDF全文
For insight into the physiological indicators of diapause in Pieris melete, water and carbohydrate (glycogen and trehalose) levels were measured under both natural and laboratory conditions. The highest water content (3.71–3.79 mg/mg dry weight) was found in larvae and developing pupae, which was substantially higher than in diapausing pupae (2.59 mg/mg dry weight). Water content was almost stable during diapause, except for individuals approaching diapause termination (3.43–3.58 mg/mg dry weight). The total carbohydrate level was significantly higher in pre‐pupae (47.41 μg/mg) compared to larvae (22.80 μg/mg) and developing pupae (21.48 μg/mg). The highest level of trehalose was detected in winter diapausing pupae, and no trehalose was found in larvae or developing pupae. Levels of glycogen were highest in pre‐pupae and lowest in diapausing pupae. Levels of total carbohydrate decreased as diapause proceeded, and no significant changes were found in trehalose levels for diapausing pupae under natural conditions or treated for 60–90 days at 5°C. Pupae treated at 20°C for 60–90 days had significantly lower levels of trehalose than those treated for 30 days. Glycogen content was relatively stable at 5°C, but increased after treatment under natural conditions and 20°C for more than 60 days. These results suggest that the dynamics of water and carbohydrate levels are potential physiological diapause indicators, which show metabolic differences between trehalose and glycogen during diapause development. 相似文献
89.
We performed a room temperature molecular dynamics (MD) simulation on a system containing 1 carboxy-myoglobin (MbCO) molecule in a sucrose-water matrix of identical composition (89% [sucrose/(sucrose + water)] w/w) as for a previous trehalose-water-MbCO simulation (Cottone et al., Biophys J 2001;80:931-938). Results show that, as for trehalose, the amplitude of protein atomic mean-square fluctuations, on the nanosecond timescale, is reduced with respect to aqueous solutions also in sucrose. A detailed comparison as a function of residue number evidences mobility differences along the protein backbone, which can be related to a different efficacy in bioprotection. Different heme pocket structures are observed in the 2 systems. The joint distribution of the magnitude of the electric field at the CO oxygen atom and of the angle between the field and the CO unit vector shows a secondary maximum in sucrose, absent in trehalose. This can explain the CO stretching band profile (A substates distribution) differences evidenced by infrared spectroscopy in sucrose- and trehalose-coated MbCO (Giuffrida et al., J Phys Chem B 2004;108:15415-15421), and in particular the appearance of a further substate in sucrose. Analysis of hydrogen bonds at the protein-solvent interface shows that the fraction of water molecules shared between the protein and the sugar is lower in sucrose than in trehalose, in spite of a larger number of water molecules bound to the protein in the former system, thus indicating a lower protein-matrix coupling, as recently observed by Fourier transform infrared (FTIR) experiments (Giuffrida et al., J Phys Chem B 2004;108:15415-15421). 相似文献
90.
Ruchika Dadhich Abhishek Singh Anjana P. Menon Manjari Mishra Shobhna Kapoor 《生物化学与生物物理学报:生物膜》2019,1861(6):1213-1227
Lipid structure critically dictates the molecular interactions of drugs with membranes influencing passive diffusion, drug partitioning and accumulation, thereby underpinning a lipid-composition specific interplay. Spurring selective passive drug diffusion and uptake through membranes is an obvious solution to combat growing antibiotic resistance with minimized toxicities. However, the spectrum of complex mycobacterial lipids and lack thereof of suitable membrane platforms limits the understanding of mechanisms underlying drug-membrane interactions in tuberculosis. Herein, we developed membrane scaffolds specific to mycobacterial outer membrane and demonstrate them as improvised research platforms for investigating anti-tubercular drug interactions. Combined spectroscopy and microscopy results reveal an enhanced partitioning of model drug Rifabutin in trehalose dimycolate-containing mycobacterial membrane systems. These effects are apportioned to specific changes in membrane structure, order and fluidity leading to enhanced drug interaction. These findings on the membrane biophysical consequences of drug interactions will offer valuable insights for guiding the design of more effective antibiotic drugs coupled with tuned toxicity profiles. 相似文献