首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29107篇
  免费   2103篇
  国内免费   2459篇
  33669篇
  2024年   91篇
  2023年   394篇
  2022年   545篇
  2021年   740篇
  2020年   881篇
  2019年   1089篇
  2018年   895篇
  2017年   794篇
  2016年   808篇
  2015年   908篇
  2014年   1337篇
  2013年   1673篇
  2012年   1017篇
  2011年   1293篇
  2010年   976篇
  2009年   1336篇
  2008年   1359篇
  2007年   1502篇
  2006年   1359篇
  2005年   1253篇
  2004年   1103篇
  2003年   1032篇
  2002年   980篇
  2001年   834篇
  2000年   799篇
  1999年   739篇
  1998年   707篇
  1997年   611篇
  1996年   667篇
  1995年   570篇
  1994年   531篇
  1993年   560篇
  1992年   505篇
  1991年   492篇
  1990年   389篇
  1989年   322篇
  1988年   328篇
  1987年   294篇
  1986年   244篇
  1985年   286篇
  1984年   290篇
  1983年   169篇
  1982年   222篇
  1981年   180篇
  1980年   151篇
  1979年   113篇
  1978年   99篇
  1977年   58篇
  1976年   49篇
  1975年   29篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
The nerve growth factor: Thirty-five years later   总被引:15,自引:0,他引:15  
  相似文献   
92.
Ammineruthenium(III) complexes have been found to act as electron acceptors for the transplasmalemma electron transport system of animal cells. The active complexes hexaammineruthenium(III), pyridine pentaammineruthenium(III), and chloropentaammineruthenium(III) range in redox potential (E 0) from 305 to –42 mV. These compounds also act as electron acceptors for the NADH dehydrogenase of isolated plasma membranes. Stimulation of HeLa cell growth, in the absence of calf serum, by these compounds provides evidence that growth stimulation by the transplasma membrane electron transport system is not entirely based on reduction and uptake of iron.  相似文献   
93.
94.
95.
96.
Differential thermal analysis indicated that the frost resistance of winter rape leaves ( Brassica napus L. var. oleifera L. cv. Gòrczanski), collected from plants grown in the cold (5/2°C), relies mainly on their ability to supercool to −9 to −11°C, i.e. consists in freezing avoidance. Initiation of ice formation in the cold-acclimated leaves resulted in the death of more than 50% of the cells as determined with a conductivity method. The development of freezing tolerance appeared to be an attribute of the second stage of plant hardening and was induced by the exposure of plants to a slightly subzero temperature (−5°C) for 18 h. Such a treatment brought about a sudden and persistent water potential decrease in the leaves, despite the fact that they had reabsorbed water from the medium prior to water potential measurements. Water potential changes were associated with a higher growth capability of the leaves as checked by determinations of disk area increments. It is suggested that the increased frost tolerance of the cold-grown winter rape leaves, subjected to subfreezing temperature, is related to the decreased water potential of the tissue caused by changes in turgor and/or in osmotic pressures of the cells.  相似文献   
97.
The function of the epidermis in auxinmediated elongation growth of maize (Zea mays L.) coleoptile segments was investigated. The following results were obtained: i) In the intact organ, there is a strong tissue tension produced by the expanding force of the inner tissues which is balanced by the contracting force of the outer epidermal wall. The compression imposed by the stretched outer epidermal wall upon the inner tissues gives rise to a wall-pressure difference which can be transformed into a water-potential difference between inner tissues and external medium (water) by removal of the outer epidermal wall. ii) Peeled segments fail to respond to auxin with normal growth. The plastic extensibility of the inner-tissue cell walls (measured with a constant-load extensiometer using living segments) is not influenced by auxin (or abscisic acid) in peeled or nonpeeled segments. It is concluded that auxin induces (and abscisic acid inhibits) elongation of the intact segment by increasing (decreasing) the extensibility specifically in the outer epidermal wall. In addition, tissue tension (and therewith the pressure acting on the outer epidermal wall) is maintained at a constant level over several hours of auxin-mediated growth, indicating that the inner cells also contribute actively to organ elongation. However, this contribution does not involve an increase of cell-wall extensibility, but a continuous shifting of the potential extension threshold (i.e., the length to which the inner tissues would extend by water uptake after peeling) ahead of the actual segment length. Thus, steady growth involves the coordinated action of wall loosening in the epidermis and regeneration of tissue tension by the inner tissues. iii) Electron micrographs show the accumulation of striking osmiophilic material (particles of approx. 0.3 m diameter) specifically at the plasma membrane/cell-wall interface of the outer epidermal wall of auxin-treated segments. iv) Peeled segments fail to respond to auxin with proton excretion. This is in contrast to fusicoccin-induced proton excretion and growth which can also be readily demonstrated in the absence of the epidermis. However, peeled and nonpeeled segments show the same sensitivity to protons with regard to the induction of acid-mediated in-vivo elongation and cell-wall extensibility. The observed threshold at pH 4.5–5.0 is too low to be compatible with a second messenger function of protons also in the growth response of the inner tissues. Organ growth is described in terms of a physical model which takes into account tissue tension and extensibility of the outer epidermal wall as the decisive growth parameters. This model states that the wall pressure increment, produced by tissue tension in the outer epidermal wall, rather than the pressure acting on the inner-tissue walls, is the driving force of growth.Abbreviations and symbols E el, E pl elastic and plastic in-vitro cell-wall extensibility, respectively - E tot E el+E pl - FC fusicoccin - IAA indole-3-acetic acid - IT inner tissue - ITW inner-tissue walls - OEW outer epidermal wall - osmotic pressure - P wall pressure - water potential  相似文献   
98.
For three acid soils from Santa Catarina, Brazil, lime application and time of incubation with lime had little effect on the adsorption of added phosphorus. In two soils with high contents of exchangeable aluminium, solution P and isotopically exchangeable P were decreased by incubating with lime for 1 month: phosphorus was probably adsorbing on freshly precipitated aluminium hydrous oxides. In one soil with less exchangeable aluminium, P in solution was increased by liming. After 23 months lime increased solution and exchangeable P possibly due to crystallization of aluminium hydrous oxides reducing the number of sites for P adsorption. All these changes were however small. In a pot experiment, lime and phosphorus markedly increased barley shoot and root dry matter and P uptake. Although liming reduced P availability measured by solution P, isotopically exchangeable P and resin extractable P, it increased phosphorus uptake by reducing aluminium toxicity and promoting better root growth. The soil aluminium saturation was reduced by liming, but the concentration of aluminium in roots changed only slightly. The roots accumulated aluminium without apparently being damaged.  相似文献   
99.
Summary Cucumber seedlings were grown in a Portsmouth soil-sand system to study how varying soil clay and organic matter content might modify cucumber seedling response to ferulic acid, a reported allelopathic agent. Leaf area expansion of cucumber seedlings, soil respiration, and soil solution concentrations of ferulic acid were monitored. Leaf area, mean absolute rates of leaf expansion, and shoot dry weight of cucumber seedlings were significantly reduced by ferulic acid concentrations ranging from 10 to 70 μg/g dry soil. Ferulic acid was applied every other day, since it rapidly disappeared from soil solution as a result of retention by soil particles, utilization by microbes and/or uptake by roots. The amount of ferulic acid retained (i.e., adsorbed, polymerized,etc.) by soil particles appeared to be secondary to microbial utilization and/or uptake by roots. Varying clay (5.3 to 9.8 g/cup) and organic matter (2.0 to 0.04g/cup) contents of the soil appeared to have little impact on the disappearance of ferulic acid from soil solution under “ideal” growth conditions for cucumber seedlings unless larger amounts of ferulic acid were added to the soil; in this case 200 μg/g. The addition of ferulic acid to the soil materials substantially increased the activity of the soil microbes. This latter conclusion is based on recovery of ferulic acid from soil solution and soil respiration measurements. Paper No. 10347 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, N C 27695-7601. The use of trade names in this publication does not imply endorsement by the North Carolina Agricultural Research Service of the product named, nor criticism of similar ones not mentioned.  相似文献   
100.
Callus cultures ofTrigonella foenum-graecum were initiated from radicle or cotyledon portions of seedlings and young leaves and maintained on modified 1-B5 medium. The callus mass was disaggregated by mechanical agitation and the discrete cells thus obtained were used to measure their electrokinetic potential. Studies pertaining to the effects of ageing on electrokinetic potential and growth index revealed a relationship between these two parameters. Thus, the rate of change of electrokinotie potential with age could be employed as a parameter to study the growth kinetics of cells in callus cultures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号