首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4885篇
  免费   142篇
  国内免费   202篇
  2024年   7篇
  2023年   31篇
  2022年   31篇
  2021年   51篇
  2020年   59篇
  2019年   66篇
  2018年   80篇
  2017年   62篇
  2016年   69篇
  2015年   70篇
  2014年   106篇
  2013年   167篇
  2012年   78篇
  2011年   126篇
  2010年   83篇
  2009年   153篇
  2008年   155篇
  2007年   185篇
  2006年   164篇
  2005年   176篇
  2004年   152篇
  2003年   163篇
  2002年   172篇
  2001年   126篇
  2000年   120篇
  1999年   132篇
  1998年   134篇
  1997年   136篇
  1996年   141篇
  1995年   132篇
  1994年   117篇
  1993年   158篇
  1992年   134篇
  1991年   150篇
  1990年   131篇
  1989年   133篇
  1988年   117篇
  1987年   110篇
  1986年   116篇
  1985年   118篇
  1984年   120篇
  1983年   71篇
  1982年   113篇
  1981年   95篇
  1980年   72篇
  1979年   49篇
  1978年   24篇
  1977年   28篇
  1976年   26篇
  1975年   9篇
排序方式: 共有5229条查询结果,搜索用时 531 毫秒
61.
Silicon accumulation and water uptake by wheat   总被引:2,自引:0,他引:2  
Silicon (Si) content in cereal plants and soil-Si solubility may be used to estimate transpiration, assuming passive Si uptake. The hypothesis for passive-Si uptake by the transpiration stream was tested in wheat (Triticum aestivum cv. Stephens) grown on the irrigated Portneuf silt loam soil (Durixerollic calciorthid) near Twin Falls, Idaho. Treatments consisted of 5 levels of plant-available soil water ranging from 244 to 776 mm provided primarily by a line-source sprinkler irrigation system. Evapotranspiration was determined by the water-balance method and water uptake was calculated from evapotranspiration, shading, and duration of wet-surface soil. Water extraction occurred from the 0 to 150-cm zone in which equilibrium Si solubility (20°C) was 15 mg Si L–1 in the Ap and Bk (0–58 cm depth) and 23 mg Si L–1 in the Bkq (58–165 cm depth).At plant maturity, total Si uptake ranged from 10 to 32 g m–2, above-ground dry matter from 1200 to 2100 g m–2 and transpiration from 227 to 546 kg m–2. Silicon uptake was correlated with transpiration (Siup=–07+06T, r2=0.85) and dry matter yield with evapotranspiration (Y=119+303ET, r2=0.96). Actual Si uptake was 2.4 to 4.7 times that accounted for by passive uptake, supporting designation of wheat as a Si accumulator. The ratio of Si uptake to water uptake increased with soil moisture. The confirmation of active Si uptake precludes using Si uptake to estimate water use by wheat.  相似文献   
62.
White clover (Trifolium repens L.) plants were grown in a calcareous soil in pots with three compartments, a central one for root growth and two outer ones for growth of vesicular-arbuscular (VA) mycorrhizal (Glomus mosseae [Nicol. & Gerd.] Gerdemann & Trappe) hyphae (hyphal compartments). Phosphorus (P) was applied at three levels (0, 20 and 50 mg kg−1 soil) in the outer compartments in mycorrhizal treatments. Root and shoot dry weight were increased in mycorrhizal plants with hyphal access to outer compartments. Growth of the mycorrhizal hyphae in the outer compartments was not significantly affected by variation in P level in these compartments. However, both concentration and amount of P in roots and shoots sharply increased with increasing P supply in the outer (hyphal) compartments. With increasing P levels the calculated delivery of P by the hyphae from the outer compartments increased from 34% to 90% of total P uptake. Hyphal access to the outer compartments also significantly increased both concentration and quantity of Cu in the plants. The calculated delivery of Cu by the hyphae from the outer compartments ranged from 53% to 62% of total Cu uptake, irrespective of the P levels and the amounts of P taken up and transported by the hyphae. However, the distribution of Cu over roots and shoots was largely dependent on P levels. With increase in P level in the outer compartments the calculated hyphal contribution to the total amount of Cu in the shoots increased from 12% to 58%, but decreased in the roots from 75% to 46%. In conclusion, uptake and transport by VA-mycorrhizal hyphae may contribute substantially not only to P nutrition, but also to Cu nutrition of the host.  相似文献   
63.
V. Römheld 《Plant and Soil》1991,130(1-2):127-134
Phytosiderophores (PS) are released in graminaceous species (Gramineae) under iron (Fe) and zinc (Zn) deficiency stress and are of great ecological significance for acquisition of Fe and presumably also of Zn. The potential for release of PS is much higher than reported up to now. Rapid microbial degradation during PS collection from nutrient solution-grown plants is the main cause of this underestimation. Due to spatial separation of PS release and microbial activity in the rhizosphere a much slower degradation of PS can be assumed in soil-grown plants. Concentrations of PS up to molar levels have been calculated under non-sterile conditions in the rhizosphere of Fe-deficient barley plants.Besides Fe, PS mobilize also Zn, Mn and Cu. Despite this unspecific mobilization, PS mobilize appreciable amounts of Fe in calcareous soils and are of significance for chlorosis resistance of graminaceous species. In most species the rate of PS release is high enough to satisfy the Fe demand for optimal growth on calcareous soils.In contrast to the chelates ZnPS and MnPS, FePS are preferentially taken up in comparison with other soluble Fe compounds. In addition, the specific uptake system for FePS (translocator) is regulated exclusively by the Fe nutritional status. Therefore, it seems appropriate to retain the term phytosiderophore instead of phytochelate.  相似文献   
64.
The objective of this study was to determine if plant roots have to take up nitrate at their maximum rate for achieving maximum yield. This was investigated in a flowing-solution system which kept nutrient concentrations at constant levels. Nitrate concentrations were maintained in the range 20 to 1000 μM. Maximum uptake rate for both species was obtained at 100 μM. Concentrations below 100 μM resulted in decreases in uptake rate per cm root (inflow) for both spinach and kohlrabi by 1/3 and 2/3, respectively. However, only with kohlrabi this caused a reduction in N uptake and yield. Thus indicating that this crop has to take up nitrate at the maximum inflow. Spinach, however, compensated for lower inflows by enhancing its root absorbing surface with more and longer roots hairs. Both species increased their root length by 1/3 at low nitrate concentrations.  相似文献   
65.
The effect of copper on the uptake of nitrogen and the tissue contents of inorganic nitrogen, amino acids and proteins were studied in cooper-sensitive Silene vulgaris (Moench) Garcke, grown at different nitrogen sources (NH4 + or NO3 -). All the toxic copper levels tested, i.e. 4, 8, 16 M Cu2+, strongly inhibited the uptake of nitrogen, especially of NO3 -, and decreased the content of NO3 -, amino acids and proteins. Especially at 4 and 8 M Cu2+, NH4 + accumulated in the plants, suggesting that the conversion of NH4 - into amino acids was inhibited.  相似文献   
66.
A field experiment was conducted for five consecutive years to determine upland rice (Oryza sativa L.) and common bean (Phaseolus vulgaris L.) response to eight P sources at three P rates in an Oxisol of Central Brazil. The P sources tested were triple superphosphate (TSP), Arafertil phosphate partially acidulated (APPA), phosphate of Patos partially acidulated (PPPA), phosphate of Araxa concentrated (PAC), phosphate of Catalao (PC), phosphate of Jacupiranga (PJ), phosphate of Patos de Minas (PPM), and phosphate of Abaete (PA). All phosphate rock sources were of Brazilian origin. The P rates used were 87, 174 and 262 kg P ha-1. Yield response to P sources and rates varied from crop to crop. Rice and bean yields were significantly correlated with Bray 1 P, but not Mehlich 1 P. In the first year, TSP and the two partially acidulated phosphate rocks (APPA, PPPA) produced higher grain yields. In the second year and all remaining years of the experiment, the efficiency of phosphate rock sources as measured by grain yield was equivalent to TSP or partially acidulated P sources. The results suggest that these phosphate rock sources could be used in rice-bean rotations on Brazilian Oxisols. Yield losses in the first year could be partially offset by the addition of a small amount of soluble P.  相似文献   
67.
The uptake of Ni, Co, and Cu by the nickel hyperaccumulator Alyssum troodii Boiss and the non-accumulator Aurinia saxatilis (L.) Desv. were studied in pot trials using artificial rooting media with varying concentrations of the metals added as soluble salts, singly and in combination. The ability of five other Ni hyperaccumulating species of Alyssum to hyperaccumulate Co was also investigated.Leaves and stems of A. troodii accumulated Ni to almost the same extent (8000–10 000 g g-1). In roots, the highest Ni concentration was 2000 g g-1. In leaves of Au. saxatilis, the maximum Ni concentration was only 380 g g-1 and the level in roots was even lower.In media containing Co, the maximum concentration of this element in A. troodii (2325 g g-1) was ten times higher than in the non-accumulator species. Slightly less Co was found in stems and roots of both species. Among the other Ni hyperaccumulators, the maximum concentration of Co in leaves ranged from about 1000–8000 g g-1.Copper concentrations were the same in all organs of both species when they were grown in copper-rich media and were in the range 40–80 g g-1, showing that neither plant was capable of taking up Cu at levels comparable to those of Ni and Co.When both plants were grown in media containing equal amounts of both Co and Ni, the Co concentrations in plant organs were the same as for specimens grown in media containing Co only. However, the Ni levels were lower in both species. Uptake of Co therefore appeared to suppress Ni uptake.Pot trials showed that the order of tolerance was Ni>Cu>Co for A. troodii and Ni>CoCu for Au. saxatilis, whereas the seedling tests showed the order to be Co>Ni>Cu. At metal concentrations 10 000 g g-1, the overall tolerance of A. troodii was greater than that of Au. saxatilis which exhibited equally low tolerance to Ni and Cu.We conclude that in A. troodii, A. corsicum Duby, A. heldreichii Hausskn., A. murale Waldstein & Kitaibel, A. pintodasilvae T.R. Dudley, and A. tenium Hálácsy, Ni tolerance and hyperaccumulation conveys the same character towards Co. This behaviour should be investigated in other hyperaccumulators of Ni and/or Co.  相似文献   
68.
A. Limami  T. Lamaze 《Plant and Soil》1991,138(1):115-121
The lower part (4 cm) of the witloof chicory tap-root (15 cm) was immersed in a complete nutrient solution for 21 days, in the darkness at 18°C and at high RH. This process of forcing which leads to the emergence of an etiolated bud (chicon) was associated with a decrease in root dry weight. Although the amount of calcium in the root and the root cationic exchange capacity remained constant during forcing, the net uptake of calcium, negligible at the onset of forcing, progressively increased to a rate after ten days of 45 mol day–1. Absorption of 45Ca remained at a constant high rate, while the initially low upward migration of 45Ca within the root and the chicon accelerated markedly. This upward migration was associated with a progressive decline in the release of newly absorbed 45Ca. The data support the hypothesis that calcium acquisition by witloof chicory root is predominantly determined by calcium efflux. As the forcing progressed, the influx remained almost constant while a large decrease in the efflux led to a net uptake of calcium. Upward translocation was probably linked to the formation of new negative exchange sites within the growing chicon. The hypothesis that calcium movement occurred along a preferential pathway (xylem vessels) or involved a mass movement through the root is discussed.  相似文献   
69.
An experiment to study the effects of Mg nutrition on root and shoot development of the Al-sensitive sorghum (Sorghum bicolor (L.) Moench) genotype CV323 grown in pots of sandy loam under different acid soil stress is reported. This experiment had a factorial design: four rates of liming were combined with four rates of Mg fertilization. When no Mg was added, the pH of the soil solutions (collected in ceramic cups) increased from 4.0 (unlimed) to 4.2, 4.7 and 5.9 at the increasing rates of liming. After 30 days of growth dry matter yields of the limed treatments were 40%, 115% and 199% higher than that of the unlimed treatment. Without liming and at the highest liming rate, adding Mg did not affect plant biomass significantly. At the two intermediate levels of liming, however, 11.3 mg extra Mg per kg soil increased dry matter yield to the same levels as found at the highest liming rate. Concentrations of Mg in the soil solution rose after Mg was added and fell when lime was added, but adding both Mg and lime increased Mg concentrations in the plant shoots. In plants of the limed treatments, dry matter yield was correlated closely with the Mg concentration in the shoot. This was not so in the unlimed treatment. Furthermore, in the unlimed treatments root development was inhibited, but reduced Mg uptake by the plants resulted mainly from the direct effect of Al- (or H-) ions in the soil solution rather than from impaired root development. It is concluded that Mg fertilization counteracted the interfering effects of Al- and H ions on Mg uptake.  相似文献   
70.
What limits nitrate uptake from soil?   总被引:11,自引:4,他引:7  
Abstract. An accepted view, that unless nitrate concentrations in the soil solution are very low (e.g. below 0.1–0.2 mol m?3) the growth of high-yielding crops is not limited by the availability of nitrogen, is challenged. Conventional analyses of nutrient supply and demand, based on calculations of apparent inflow rates (uptake rates per unit total root length) are invalid. Apparent inflow rates are inversely proportional to root length. The convention of using total root length grossly overestimates the fraction of the root system active in nutrient uptake. Consequently, inflow rates based on total root lengths underestimate the true values, indicating unrealistically low nutrient concentration differentials between bulk soil and root surfaces required to drive uptake. An alternative method of analysis is suggested. This is based on total nutrient uptake rather than on inflow rate. Measurements of the former do not depend on estimates of active root length and can be made directly and reliably. The method was applied to data obtained from a pot experiment using spring wheat (Triticum aestivum L., cv. Wembley) grown in soil without nitrogen fertilizer (N0) or with nitrogen fertilizer equivalent to 200kg N ha?1 (N+). Soil nitrate concentrations calculated using the conventional method based on total root length, suggested that any increases in concentration above those measured in the N0 treatment should not have resulted in increased uptake and growth. However, the N+ plants were always bigger than those in the No treatment, refuting this suggestion. Theoretical uptakes of nitrogen (calculated initially on the basis of a fully active root system) were adjusted, by reducing the effective root length incrementally, until the theoretical uptake matched the measured net uptake of nitrogen. The mean fractions of the root systems likely to have been involved in nitrate uptake were 11% and 3.5% of the total lengths of root in the N0 and N+ treatments, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号