首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4885篇
  免费   141篇
  国内免费   203篇
  2024年   7篇
  2023年   31篇
  2022年   31篇
  2021年   51篇
  2020年   59篇
  2019年   66篇
  2018年   80篇
  2017年   62篇
  2016年   69篇
  2015年   70篇
  2014年   106篇
  2013年   167篇
  2012年   78篇
  2011年   126篇
  2010年   83篇
  2009年   153篇
  2008年   155篇
  2007年   185篇
  2006年   164篇
  2005年   176篇
  2004年   152篇
  2003年   163篇
  2002年   172篇
  2001年   126篇
  2000年   120篇
  1999年   132篇
  1998年   134篇
  1997年   136篇
  1996年   141篇
  1995年   132篇
  1994年   117篇
  1993年   158篇
  1992年   134篇
  1991年   150篇
  1990年   131篇
  1989年   133篇
  1988年   117篇
  1987年   110篇
  1986年   116篇
  1985年   118篇
  1984年   120篇
  1983年   71篇
  1982年   113篇
  1981年   95篇
  1980年   72篇
  1979年   49篇
  1978年   24篇
  1977年   28篇
  1976年   26篇
  1975年   9篇
排序方式: 共有5229条查询结果,搜索用时 31 毫秒
161.
Summary The continued release of caesium radioisotopes into the environment has led to a resurgence of interest in microbe-Cs interactions. Caesium exists almost exclusively as the monovalent cation Cs+ in the natural environment. Although Cs+ is a weak Lewis acid that exhibits a low tendency to form complexes with ligands, its chemical similarity to the biologically essential alkali cation K+ facilitates high levels of metabolism-dependent intracellular accumulation. Microbial Cs+ (K+) uptake is generally mediated by monovalent cation transport systems located on the plasma membrane. These differe widely in specificity for alkali cations and consequently microorganisms display large differences in their ability to accumulate Cs+; Cs+ appears to have an equal or greater affinity than K+ for transport in certain microorganisms. Microbial Cs+ accumulation is markedly influenced by the presence of external cations, e.g. K+, Na+, NH4 + and H+, and is generally accompanied by an approximate stoichiometric exchange for intracellular K+. However, stimulation of growth of K+-starved microbial cultures by Cs+ is limited and its has been proposed that it is not the presence of Cs+ in cells that is growth inhibitory but rather the resulting loss of K+. Increased microbial tolerance to Cs+ may result from sequestration of Cs+ in vacuoles or changes in the activity and/or specificity of transport systems mediating Cs+ uptake. The precise intracellular target(s) for Cs+-induced toxicity has yet to be clearly defined, although certain internal structures, e.g. ribosomes, become unstable in the presence of Cs+ and Cs+ is known to substitute poorly for K+ in the activation of many K+-requiring enzymes.  相似文献   
162.
Spinach plants (Spinacea oleracea L. cv. Estivato) were grown on nutrient solutions under deficient, normal and excess sulfate supply. In both young and mature plants net uptake of sulfate and its transport to the shoot increased with increasing sulfate supply, but both processes proceeded at a higher rate in young as compared to mature plants. The relative sulfate transport, i.e. the relative amount of the sulfate taken up that is transported to the shoot, decreased with increasing sulfate supply. Apparently, net uptake of sulfate is not strictly controlled by the sulfur demand of the shoot, but xylem loading appears to counteract excess transport of sulfate to the shoot. Fumigation with H2S or SO2 reduced net uptake of sulfate by the roots in sulfur-deficient plants and absolute as well as relative sulfate transport to the shoot independent of the three sulfate levels supplied to the plant. At the same time thiol contents of the shoot and the root were enhanced by fumigation with H2S and SO2. These findings are consistent with the idea that thiols produced in the leaves can mediate demand-driven control of sulfate uptake by the roots and its transport to the shoot.  相似文献   
163.
Summary 1. The effect of lead (in vivo) on the uptake of GABA, dopamine, and histidine as a precursor of histamine in synaptosomes obtained from chronically lead-treated rats was studied.2. Lead decreased the uptake of GABA, increased the uptake of dopamine, and did not change the uptake of histidine. These effects were independent of calcium concentration.3. Lead administration to the rat changed the morphology of the synaptosomes, as manifested in the decreased number of synaptic vesicles and disturbed mitochondrial structure.4. The results suggest the existence of several mechanisms of lead toxicity on uptake, related to individual neurotransmitters, which are not necessarily connected with a Pb2+/Ca2+ interaction.  相似文献   
164.
Portielje  R.  Lijklema  L. 《Hydrobiologia》1994,275(1):349-358
The uptake of phosphate by benthic communities, dominated by living algae, previously exposed to different levels of external nutrient loading, exhibited first-order kinetics with respect to the intracellular P-deficit. This deficit is the difference between the maximum and the actual intracellular P-concentration.The maximum storage capacity of P per unit of dry weight was positively correlated to the level of external nutrient loading, whereas the phosphate uptake rate constant was negatively correlated.The observed internal P concentrations in the benthic layer of test ditches over a period of two and a half years, indicated a slight decrease towards a minimum value in a ditch with a low external P-input. In a medium loaded ditch the internal P-concentration did not change significantly. In a high loaded ditch increasing internal P-concentrations over time were observed, towards P-saturation of the benthic community.  相似文献   
165.
A new method for real-time monitoring of the oxygen uptake rate (OUR) in bioreactors, based on dissolved oxygen (DO) measurement at two points, has been developed and tested extensively. The method has several distinct advantages over known techniques.It enables the continuous and undisturbed monitoring of OUR, which is conventionally impossible without gas analyzers. The technique does not require knowledge of k(L)a. It provides smooth, robust, and reliable signal. The monitoring scheme is applicable to both microbial and mammalian cell bioprocesses of laboratory or industrial scale. The method was successfully used in the cultivation of NSO-derived murine myeloma cell line producing monoclonal antibody. It was found that while the OUR increased with the cell density, the specific OUR decreased to approximately one-half at cell concentrations of 16 x 10(6) cells/mL, indicating gradual reduction of cell respiration activity. Apart from the laboratory scale cultivation, the method was applied to industrial scale perfusion culture, as well as to processes using other cell lines. (c) 1994 John Wiley & Sons, Inc.  相似文献   
166.
Abstract: Previous studies have demonstrated that bovine chromaffin cells cultured in medium with 10 nM insulin-like growth factor-I (IGF-I) secrete about twofold more catecholamine when exposed to secretory stimuli than do cells cultured without IGF-I. The purpose of this study was to determine whether protein kinase C (PKC) is involved in the effect of IGF-I on secretion from these cells. PKC was down-regulated in the cells by 16–18 h of treatment with β-phorbol didecanoate (β-PDD; 100 nM). Such treatment had no effect on high-K+-stimulated secretion from cells cultured without IGF-I; however, secretion from cells cultured with IGF-I was reduced to a level comparable to that in cells cultured without the peptide. The inactive isomer, α-PDD (100 nM), had no effect on secretion from untreated or IGF-I-treated chromaffin cells. The effect of β-PDD was time and concentration dependent, with 100 nM β-PDD producing a maximal effect in 8–10 h. In situ PKC activity measured in permeabilized cells treated with PMA (300 nM) was decreased by~40% by 10 h and was reduced to almost basal levels by 18 h. Immunoblotting experiments demonstrated that both α-and ε-PKC were lost from the cells with time courses similar to that seen in the in situ PKC assay. Overnight treatment with the PKC inhibitor H7 (100 μM) prevented the enhanced secretion normally seen in IGF-l-treated cells, whereas HA1004 had no effect. High-K+-stimulated 45Ca2+ uptake in IGF-I-treated cells was attenuated by long-term treatment with β-PDD (200 nM) or H7 (100 μM). Together these observations suggest that PKC is required for IGF-I-enhanced secretion from chromaffin cells.  相似文献   
167.
The subcellular distribution of hexoses, sucrose and amino acids among the stromal, cytosolic and vacuolar compartments was analysed by a nonaqueous fractionation technique in leaves of tobacco (Nicotiana tabaccum L.) wild-type and transgenic plants expressing a yeast-derived invertase in the cytosolic, vacuolar or apoplasmic compartment. In the wild-type plants the amino acids were found to be located in the stroma and in the cytosol, sucrose mainly in the cytosol and up to 98% of the hexoses in the vacuole. In the leaves of the various transformants, where the contents of hexoses were greater than in wild-type plants, again 97–98% of these hexoses were found in the vacuoles. It is concluded that leaf vacuoles contain transporters for the active uptake of glucose and fructose against a high concentration gradient. A comparison of estimated metabolite concentrations in the subcellular compartments of wild-type and transformant plants indicated that the decreased photosynthetic capacity of the transformants is not due to an osmotic effect on photosynthesis, as was shown earlier to be the case in transformed potato leaves, but is the result of a long-term dedifferentiation of tobacco leaf cells to heterotrophic cells.Abbreviations apo-inv tobacco plant with yeast invertase in the apoplasm - Chl chlorophyll - cy-inv tobacco plant with yeast invertase in the cytosol - vac-inv tobacco plant with yeast invertase in the vacuole - WT wild-type tobacco plant The authors thank A. Großpietsch for her able technical assistance. This work has been supported by the Bundesminister für Forschung und Technologie.  相似文献   
168.
The stable isotopes 2H and 18O were used to determine the water sources of Eucalyptus camaldulensis at three sites with varying exposure to stream water, all underlain by moderately saline groundwater. Water uptake patterns were a function of the long-term availability of surface water. Trees with permanent access to a stream used some stream water at all times. However, water from soils or the water table commonly made up 50% of these trees' water. Trees beside an ephemeral stream had access to the stream 40–50% of the time (depending on the level of the stream). No more than 30% of the water they used was stream water when it was available. However, stream water use did not vary greatly whether the trees had access to the stream for 2 weeks or 10 months prior to sampling. Trees at the third site only had access to surface water during a flood. These trees did not change their uptake patterns during 2 months inundation compared with dry times, so were not utilising the low-salinity flood water. Pre-dawn leaf water potentials and leaf 13C measurements showed that the trees with permanent access to the stream experienced lower water stress and had lower water use efficiencies than trees at the least frequently flooded site. The trees beside the ephemeral stream appeared to change their water use efficiency in response to the availability of surface water; it was similar to the perennial-stream trees when stream water was available and higher at other times. Despite causing water stress, uptake of soil water and groundwater would be advantageous to E. camaldulensis in this semi-arid area, as it would provide the trees with a supply of nutrients and a reliable source of water. E. camaldulensis at the study site may not be as vulnerable to changes in stream flow and water quality as previously thought.  相似文献   
169.
170.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号