首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4882篇
  免费   142篇
  国内免费   205篇
  5229篇
  2024年   7篇
  2023年   31篇
  2022年   31篇
  2021年   51篇
  2020年   59篇
  2019年   66篇
  2018年   80篇
  2017年   62篇
  2016年   69篇
  2015年   70篇
  2014年   106篇
  2013年   167篇
  2012年   78篇
  2011年   126篇
  2010年   83篇
  2009年   153篇
  2008年   155篇
  2007年   185篇
  2006年   164篇
  2005年   176篇
  2004年   152篇
  2003年   163篇
  2002年   172篇
  2001年   126篇
  2000年   120篇
  1999年   132篇
  1998年   134篇
  1997年   136篇
  1996年   141篇
  1995年   132篇
  1994年   117篇
  1993年   158篇
  1992年   134篇
  1991年   150篇
  1990年   131篇
  1989年   133篇
  1988年   117篇
  1987年   110篇
  1986年   116篇
  1985年   118篇
  1984年   120篇
  1983年   71篇
  1982年   113篇
  1981年   95篇
  1980年   72篇
  1979年   49篇
  1978年   24篇
  1977年   28篇
  1976年   26篇
  1975年   9篇
排序方式: 共有5229条查询结果,搜索用时 15 毫秒
131.
Reduced atmospheric oxygen concentration is beneficial to embryo development; however, optimal oxygen concentration for oocyte maturation remains undetermined. Likewise, there is no consensus of appropriate medium supplementation during maturation. The objective of this study was to determine whether oxygen tension (20% or 5% O2) and epidermal growth factor (EGF) affect oocyte metabolism and subsequent embryo development. Cumulus-oocyte complexes (COCs) were collected from 28-day-old equine chorionic gonadotropin (eCG) primed or unprimed F1 (C57BL/6xCBA) mice. COCs were matured in defined medium in one of four groups: 20% O2, 20% O2 + EGF, 5% O2, 5% O2 + EGF. In vivo matured COCs were also collected for analysis. COCs from unprimed mice, matured in 5% O2 +/- EGF or 20% O2 + EGF had higher metabolic rates than COCs matured in 20% O2 (P < 0.05). COCs from primed mice had higher metabolic rates when matured in the presence of EGF, regardless of oxygen tension (P < 0.01). Oxygen uptake and mitochondrial membrane potential were higher for in vivo matured oocytes and oocytes matured under 5% O2 compared to oocytes matured under 20% O2 (P < 0.05). Blastocyst formation was not different between maturation groups (primed or unprimed); however, embryo cell numbers were 20-45% significantly higher when COCs were matured at 5% O2 (P < 0.05). Results suggest that oocytes matured in physiological concentrations of oxygen have improved development and metabolic activity, more closely resembling in vivo maturation. These findings have implications for oocyte maturation in both clinical and research laboratories.  相似文献   
132.
Welch  R.M.  Hart  J.J.  Norvell  W.A.  Sullivan  L.A.  Kochian  L.V. 《Plant and Soil》1999,208(2):243-250
Cd accumulation in durum wheat presents a potential health risk to consumers. In an effort to understand the physiological mechanisms involved with Cd accumulation, this study examined the effects of Zn on Cd root uptake and phloem translocation in a split– root system. Durum wheat seedlings were grown in chelate-buffered nutrient solution with intact root systems divided into two sections. Each root section grew in a separate 1 l pot, one of which contained 0.2 μM CdSO4. In addition, each two-pot system contained ZnSO4 in the following combinations (in μm) (for -cd root system: +cd root system): 1:1, 1:10, 10:1,10:10, 1:19, and 19:1. Harvested plant material was analyzed for Cd and Zn. In addition, rates of Cd and Zn net uptake, translocation to the shoot, and root export (translocation from one root segment to the other) between days 8 and 22 were calculated. Results show that Zn was not translocated from one root section to its connected root section. Uptake rates of Cd increased as solution Zn concentrations increased. Cd translocation from one root section to the other decreased significantly when the Zn concentration in either pot was greater than 1 μM. These results show the potential of Zn to inhibit movement of Cd via the phloem, and suggests that providing adequate Zn levels may limit phloem loading of Cd into wheat grain. Increasing the rhizosphere activity of Zn2+ in Cd-containing soils may therefore result in reduced Cd accumulation in grain even while net Cd uptake is slightly enhanced. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
133.
The mechanisms for acquisition of dissolved inorganic carbon (DIC) in the red macroalga Gracilaria gaditana nom. prov. have been investigated. The capacity for HCO3 use by an extracellular carbonic anhydrase (CA; EC 4.2.1.1), and by an anion exchanger with similar properties to that of red blood cells (AE1), has been quantified. It was illustrated by comparing O2 evolution rates with those theoretically supported by CO2, as well as by photosynthesis-pH curves. Both external and internal CA, and a direct uptake were involved in HCO3 use, since photosynthesis and pH evolution were affected by acetazolamide, 6-ethoxyzolamide (inhibitors of external and total CA, respectively) and 4,4′-diisothiocyanatostilbene-2,2′-disulfonate, (DIDS; an inhibitor of HCO3 exchanger protein). The activity of the external CA was detected by a potentiometric method and by an alternative method based on the study of O2 evolution after addition of CO2 and acetazolamide. The latter method showed a residual photosynthetic rate due to direct HCO3 use. Inhibitors caused a reduction in the pH compensation points in pH-drift experiments. The CO2 compensation points for photosynthesis increased when the inhibitors were applied, indicating a suppresion of the pathways involved in the carbon-concentrating mechanism. The net photosynthesis rates as a function of DIC concentration displayed a biphasic pattern that could be supported by the occurrence of the two mechanisms of HCO3 use. The potential contribution to HCO3 acquisition by the DIDS-sensitive mechanism was higher after culturing at a high pH. Our results suggest that the HCO3 use by Gracilaria gaditana is carried out by the two DIC uptake mechanisms. These operate simultaneously with different affinities for DIC, the indirect HCO3 use by an external CA activity being the main pathway. The presence of a carbon-concentrating mechanism confers eco-physiological advantages in a fluctuating ecosystem subjected daily to high pHs and low DIC concentrations. Received: 3 July 1998 / Accepted: 30 November 1998  相似文献   
134.
Potassium Translocation into the Root Xylem   总被引:9,自引:0,他引:9  
Abstract: Potassium is the most abundant cation in cells of higher plants and plays vital roles in plant growth and develop ment. Since the soil is the only source of potassium, plant roots are well adapted to exploit the soil for potassium and supply it to the leaves. Transport across the root can be divided into three stages: uptake into the root symplast, transport across the symplast and release into the xylem. Uptake kinetics of potassium have been studied extensively in the past and sug gested the presence of high and low affinity systems. Molecular and electrophysiological techniques have now confirmed the existence of discrete transporters encoded by a number of genes. Surprisingly, detailed characterisation of the transpor ters using reverse genetics and heterologous expression shows that a number of the transporters (AKT and AtKUP family) func tion both in the low (μM) and high (mM) K+ range. Electrophy siological studies indicate that K+ uptake by roots is coupled to H+, to drive uptake from micromolar K+. However, thus far only Na+ coupled K+ transport has been demonstrated (HKT1). Ion channels play a major role in the exchange of potassium be tween the symplast and the xylem. An outward rectifying chan nel (KORC) mediates potassium release. Cloning of the gene en coding this channel (SKOR) shows that it belongs to the Shaker super-family. Both electrophysiological and genetic studies demonstrate that K+ release through this channel is controlled by the stress hormone abscisic acid. Interestingly, xylem par enchyma cells of young barley roots also contain a number of in ward rectifying K+ channels that are controlled by G-proteins. The involvement of G-proteins emphasises once more that po tassium transport at the symplast/xylem boundary is under hor monal control. The role of the electrical potential difference across the symplastxylem boundary in controlling potassium release is discussed.  相似文献   
135.
Human polo-like kinase 1 (Plk1) is involved in cell proliferation and overexpressed in a broad variety of different cancer types. Due to its crucial role in cancerogenesis Plk1 is a potential target for diagnostic and therapeutic applications. Peptidic ligands can specifically interact with the polo-box domain (PBD) of Plk1, a C-terminal located phosphoepitope binding motif. Recently, phosphopeptide MQSpTPL has been identified as ligand with high binding affinity. However, a radiolabeled version of this peptide showed only insufficient cellular uptake. The present study investigated peptide dimers consisting of PBD-targeting phosphopeptide MQSpTPL and a cell-penetrating peptide (CPP) moiety. The new constructs demonstrate superior uptake in different cancer cell-lines compared to the phosphopeptide alone. Furthermore, we could demonstrate binding of phosphopeptide-CPP dimers to PBD of Plk1 making the compounds interesting leads for the development of molecular probes for imaging Plk1 in cancer.  相似文献   
136.
为探究燕麦(Avena sativa)-绿豆(Phaseolus radiatus)间作效应及氮素转移特性, 在不施氮肥的大田试验条件下, 设置3种种植模式(燕麦单作、绿豆单作和燕麦-绿豆间作), 采用传统挖根法和15N同位素标记法进行研究。结果表明, 间作系统中燕麦侵袭力强于绿豆, 绿豆生长受到抑制。整个生育期, 间作燕麦地上部干物质积累量比单作增加14.9%-33.1%, 2年成熟期间作燕麦的氮素积累量比单作分别提高53.1%和44.8%; 间作减少了开花结荚期绿豆氮素积累量和根瘤重量, 降低了绿豆的固氮效率, 绿豆的固氮效率2年平均降低23.7%, 生物固氮量平均减少11.66%。间作绿豆向燕麦的氮素转移率2年平均值达31.7%, 氮素转移量为212.16 kg∙hm-2。燕麦-绿豆间作降低了开花结荚期绿豆的根瘤固氮酶活性和固氮效率, 但绿豆体内氮素转移增加了燕麦对氮素的吸收利用, 实现了地上部与地下部生长的相互调节和促进, 优化了农田生态系统的氮素管理。  相似文献   
137.
138.
The cholinergic projections from basal forebrain nuclei to the retrosplenial cortex (RSC) have previously been studied using a variety of histological approaches. Studies using acetylcholinesterase (AChE) histochemistry and choline acetyltransferase (ChAT) immunocytochemistry have demonstrated that this projection travels via the cingulum on route to the RSC. Preliminary studies from our laboratory, however, have shown that the fornix may also be involved in this projection. The present study uses the combination of pathway lesions, and the analysis of cholinergic neurochemical markers in the RSC to determine the role of the fornix in the cholinergic projection to the RSC. High affinity choline uptake (HACU) and ChAT activity were measured in the RSC of control rats, animals with cingulate lesions, and animals with fornix plus cingulate lesions. Fornix plus cingulate lesions resulted in significant deceases in HACU and ChAT activity in comparison to cingulate lesions alone. Muscarinic receptor binding was also evaluated in combination with the various lesions, and a significant increase in retrosplenial receptor binding was noted following fornix lesions. Together, these results support the concept of a fornix-mediated cholinergic pathway to the RSC.  相似文献   
139.
Summary 1. The effect of lead (in vivo) on the uptake of GABA, dopamine, and histidine as a precursor of histamine in synaptosomes obtained from chronically lead-treated rats was studied.2. Lead decreased the uptake of GABA, increased the uptake of dopamine, and did not change the uptake of histidine. These effects were independent of calcium concentration.3. Lead administration to the rat changed the morphology of the synaptosomes, as manifested in the decreased number of synaptic vesicles and disturbed mitochondrial structure.4. The results suggest the existence of several mechanisms of lead toxicity on uptake, related to individual neurotransmitters, which are not necessarily connected with a Pb2+/Ca2+ interaction.  相似文献   
140.
Models of the effects of atmosphericN deposition in forested watersheds have notadequately accounted for the effects of aquatic andnear-stream processes on the concentrations and loadsof NO in surface waters. This studycompared the relative effects of aquatic andnear-stream processes with those from the terrestrialecosystem on the retention and transport ofNO in two contrasting stream reaches ofthe Neversink River, a forested watershed in theCatskill Mountains of New York that receives among thehighest load of atmospheric N deposition in thenortheastern United States. Stream water samples werecollected every two hours and ground-water andtributary samples were collected daily at base flowconditions during four 48-hour periods from April toOctober 1992, and NO mass balances werecalculated for each site. Results indicated diurnalvariations in stream NO concentrations inboth reaches during all four sampling periods; this isconsistent with uptake of NO byphotoautotrophs during daylight hours. Mass-balanceresults revealed significant stream reach losses ofNO at both sites during all samplingperiods. The diurnal variations in NO concentrations and the retention of NO relative to terrestrial contributions to the streamreaches were greater downstream than upstream becausephysical factors such as the head gradients ofinflowing ground water and the organic matter contentof sediment are more favorable to uptake anddenitrification downstream. The mass retention ofNO increased as the mean 48-hr streamdischarge increased at each site, indicating that theresponsible processes are dependent onNO supply. Low stream temperatures duringthe April sampling period, however, probably reducedthe rate of retention processes, resulting in smallerlosses of NO than predicted from streamdischarge alone. Water samples collected from thestream, the hyporheic zone, and the alluvial groundwater at sites in both reaches indicated that the neteffect of hyporheic processes on downstreamNO transport ranged from conservativemixing to complete removal by denitrification. Therelative effects of biological uptake anddenitrification as retention mechanisms could not bequantified, but the results indicate that bothprocesses are significant. These results generallyconfirm that aquatic and near-stream processes causesignificant losses of NO in the NeversinkRiver, and that the losses by these processes atdownstream locations can exceed the NO contributions to the stream from the terrestrialenvironment during summer and fall base-flowconditions. Failure to consider these aquatic andnear-stream processes in models of watershed responseto atmospheric N deposition could result inunderestimates of the amount of NO leaching from forested ecosystems and to an inabilityto unequivocally relate geographic differences inNO concentrations of stream waters tocorresponding differences in terrestrial processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号