首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9781篇
  免费   469篇
  国内免费   193篇
  2024年   15篇
  2023年   62篇
  2022年   95篇
  2021年   141篇
  2020年   176篇
  2019年   145篇
  2018年   217篇
  2017年   161篇
  2016年   163篇
  2015年   259篇
  2014年   295篇
  2013年   424篇
  2012年   208篇
  2011年   252篇
  2010年   217篇
  2009年   326篇
  2008年   335篇
  2007年   394篇
  2006年   397篇
  2005年   344篇
  2004年   332篇
  2003年   314篇
  2002年   313篇
  2001年   251篇
  2000年   257篇
  1999年   254篇
  1998年   187篇
  1997年   194篇
  1996年   208篇
  1995年   199篇
  1994年   206篇
  1993年   204篇
  1992年   203篇
  1991年   215篇
  1990年   183篇
  1989年   197篇
  1988年   198篇
  1987年   187篇
  1986年   174篇
  1985年   207篇
  1984年   265篇
  1983年   152篇
  1982年   267篇
  1981年   204篇
  1980年   151篇
  1979年   110篇
  1978年   48篇
  1977年   67篇
  1976年   25篇
  1974年   14篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
171.
CO2 uptake and transport in leaf mesophyll cells   总被引:4,自引:3,他引:1  
Abstract The acquisition of inorganic carbon for photosynthetic assimilation by leaf mesophyll cells and chloroplasts is discussed with particular reference to membrane permeation of CO2 and HCO?3. Experimental evidence indicates that at the apoplast pH normally experienced by leaf mesophyll cells (pH 6–7) CO2 is the principal species of inorganic carbon taken up. Uptake of HCO?3 may also occur under certain circumstances (i.e. pH 8.5), but its contribution to the net flux of inorganic carbon is small and HCO?3 uptake does not function as a CO2-concentrating mechanism. Similarly, CO2 rather than HCO?3 appears to be the species of inorganic carbon which permeates the chloroplast envelope. In contrast to many C3 aquatic plants and C4 plants, C3 terrestrial plants lack specialized mechanisms for the acquisition and transport of inorganic carbon from the intercellular environment to the site of photosynthetic carboxylation, but rely upon the diffusive uptake of CO2.  相似文献   
172.
Abstract Growth-chamber cultivated Raphanus plants accumulate nitrate during their vegetative growth. After 25 days of growth at a constant supply to the roots of 1 mol m?3 (NO?3) in a balanced nutrient solution, the oldest leaves (eight-leaf stage) accumulated 2.5% NO?3-nitrogen (NO3-N) in their lamina, and almost 5% NO3-N in their petioles on a dry weight basis. This is equivalent to approximately 190 and 400 mol?3 m?3 concentration of NO?3 in the lamina and the petiole, respectively, as calculated on a total tissue water content basis. Measurements were made of root NO?3 uptake, NO?3 fluxes in the xylem, nitrate uptake by the mesophyll cells, and nitrate reduction as measured by an in vivo test. NO?3 uptake by roots and mesophyll cells was greater in the light than in the dark. The NO?3 concentration in the xylem fluid was constant with leaf age, but showed a distinct daily variation as a result of the independent fluxes of root uptake, transpiration and mesophyll uptake. NO?3 was reduced in the leaf at a higher rate in the light than in the dark. The reduction was inhibited at the high concentrations calculated to exist in the mesophyll vacuoles, but reduction continued at a low rate, even when there was no supply from the incubation medium. Sixty-four per cent of the NO?3 influx was turned into organic nitrogen, with the remaining NO?3 accumulating in both the light and the dark.  相似文献   
173.
Summary Cellular distribution of insulin receptors was studied in fractionated rat liver cell suspensions using 1251-insulin and a visual probe consisting of latex beads covalently linked to insulin (minibeads). Fractionation was done on metrizamide gradients which yielded two cellular fractions. The large cell fraction consisted mostly of hepatocytes and the small cell fraction consisted of 37% endothelial cells as well as Kupffer cells. The magnitude of insulin uptake by the endothelium-rich small cell fraction was at least double that of the uptake by the hepatocyte-rich fraction. The minibead technique demonstrated that in the small cell fraction only endothelial cells, and not Kupffer cells, were responsible for the insulin uptake. Our findings suggest that liver endothelium may be responsible for the uptake of circulating insulin and its transport to hepatocyte. This emphasizes the presence of a tissue-blood barrier in the liver.Abbreviations PRS phosphate-buffered saline - SEM scanning electron microscopy - TEM transmission electron microscopy  相似文献   
174.
醋酸铵培养的棕色固氮菌(Azotobacter vinelandii),经超声击碎高速离心制备粗提取液、DEAE-纤维素柱层析表明,体内~(99)MoFe蛋白合成受到阻遏,在0.15 M NaGl洗脱分部中,除~(99)Mo储存蛋白峰外,还存在一个无机~(99)MoO_4~=组分。醋酸铵培养的棕色固氮菌经去阻遏后,在体内固氮活性出现的同时,可观察到原先菌体内累积的~(99)Mo储存蛋白峰降低,无机~(99)MoO_4~=的组分几乎消失以及~(99)MoFe蛋白合成。若去阻遏过程存在氯霉素,则菌体不显示固氮活性,(99)MoFe蛋白不再合成,储存蛋白和无机铝酸组分中~(99)Mo的转移停止。  相似文献   
175.
phenazine methosulfate (PMS) stimulates ouabain-sensitive Rb+ uptake by HeLa cells. This stimulation cannot be attributed to the effect of the dye on the intracellular Na+ or ATP content. Respiratory inhibitors, such as 5 mM NaCN and 5 microM rotenone, and anaerobic conditions enhance the stimulation of Rb+ uptake by PMS. Cellular respiration is stimulated, but lactate production is reduced in the presence of PMS, irrespective of the presence of respiratory inhibitors. Cellular NADH is oxidized markedly on addition of PMS plus inhibitors, but it is not affected by addition of the inhibitors only. In the presence of a high concentration of PMS, PMS-stimulated ouabain-sensitive Rb+ uptake is inhibited by addition of ascorbate. From these results it is concluded that Na+K-pump activity is closely related to the cellular redox state.  相似文献   
176.
J Wells 《Bio Systems》1985,17(4):301-315
Some previous studies of cell division have suggested that chromosome movements in mitosis involve two distinct forces: one which pulls chromosomes poleward by means of attached fibers, and another which tends to push chromosome arms away from the pole. The latter force may also be a factor in non-chromosomal spindle transport, by which objects other than chromosomes are transported toward or away from spindle poles. Based on a survey of previous literature, this paper makes a prima facie case for describing this latter force as "inertial", since in some respects it can be simulated by centrifugation. A theoretical analysis demonstrates that an inertial force could arise in the spindle from postulated high-frequency, small-amplitude oscillations, which could be caused by changes in coherently processing electron spin alignments at the spindle poles. Some possible experimental approaches to the problem are briefly outlined.  相似文献   
177.
The nephrotoxicity of chlorotrifluoroethylene (CTFE) was examined using isolated rabbit renal tubules suspensions. Exposure of the tubules to CTFE resulted in consumption of CTFE, formation of a glutathione conjugate and inhibition of active organic acid transport. Synthetic cysteine, N-acetylcysteine or glutathione conjugates of CTFE inhibited transport indicating S-conjugation as a possible toxic pathway. 1,2-dichlorovinyl glutathione (DCVG), a model synthetic glutathione conjugate, was used to examine the degradation and toxicity of these conjugates. DCVG inhibited rabbit renal tubule transport in vivo and in vitro. The DCVG was found to be degraded with the evolution of glutamine and glycine to produce the ultimate nephrotoxicant, dichlorovinyl cysteine. Dichlorovinyl cysteine is then bioactivated with the release of ammonia. This sequential degradation explains the latency of DCVG-induced renal transport inhibition relative to dichlorovinyl cysteine. It is now evident that certain halogenated ethylenes are capable of being biotransformed to glutathione conjugates in the kidney with their subsequent hydrolysis to nephrotoxic cysteine conjugates.  相似文献   
178.
SODIUM TRANSPORT IN ENTEROMORPHA INTESTINALIS (L.) LINK   总被引:1,自引:1,他引:0  
  相似文献   
179.
Mode of high temperature injury to wheat during grain development   总被引:5,自引:0,他引:5  
High temperature stress adversely affects wheat growth in many important production regions, but the mode of injury is unclear. Wheat ( Triticum aestivum L. cv. Newton) was grown under controlled conditions to determine the relative magnitude and sequences of responses of source and sink processes to high temperature stress during grain development. Regimes of 25°C day/15°C night, 30°C day/20°C night, and 35°C day/25°C night from 5 days after anthesis to maturity differentially affected source and sink processes. High temperatures accelerated the normal decline in viable leaf blade area and photosynthetic activities per unit leaf area. Electron transport, as measured by Hill reaction activity, declined earlier and faster than other photosynthetic processes at the optimum temperature of 25/15 °C and at elevated temperatures. Changes in RUBP carboxylase activities were similar in direction but smaller in magnitude than changes in photosynthesic rate. Increased protease activity during senscence was markedly accentuated by high temperature stress. Specific protease activity increased 4-fold at 25/15 °C and 28-fold at 35/25 °C from 0 to 21 days after initiation of temperature treatments. Grain-filling rate decreased from the lowest to the highest temperature, but the change was smaller than the decrease in grain-filling duration at the same temperatures. We concluded that a major effect of high temperature is acceleration of senescence, including cessation of vegetative and reproductive growth, deterioration of photosynthetic activities, and degradation of proteinaceous constituents.  相似文献   
180.
Summary The lactose transport carrier from parental (X71/F'W3747) and mutant cells (54/F'5441) was reconstituted into proteoliposomes. Transport by the counterflow assay showed slightly greater activity in proteoliposomes prepared from extracts of the mutant membranes compared with that for the parental cell. The mutant carrier showed a threefold lowerK m but similarV max compared to the parent. On the other hand proteoliposomes from the mutant showed a defect in protonmotive force-driven accumulation, compared with the parent. With a pH gradient (inside alkaline) plus a membrane potential (inside negative) the parental proteoliposomes accumulated lactose 25-fold over the medium concentration while the mutant proteoliposomes accumulated sixfold. In a series of experiments proteoliposomes were exposed to proteolytic enzymes. Chrymotrypsin treatment resulted in 30% inhibition of counterflow activity for the reconstituted carrier from both parent and mutant. Papain produced 84% inhibition of transport by the reconstituted parental carrier but only 41% of that of the mutant. Trypsin and carboxypeptidase Y treatment had no effect on counterflow activity of either parent or mutant. Exposure of purified lactose carrier in proteoliposomes to carboxypeptidase Y resulted in the release of alanine and valine, the two C-terminal amino acids predicted from the DNA sequence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号