首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   435篇
  免费   29篇
  国内免费   12篇
  2023年   7篇
  2022年   7篇
  2021年   18篇
  2020年   15篇
  2019年   14篇
  2018年   11篇
  2017年   15篇
  2016年   16篇
  2015年   12篇
  2014年   23篇
  2013年   30篇
  2012年   24篇
  2011年   22篇
  2010年   18篇
  2009年   36篇
  2008年   35篇
  2007年   20篇
  2006年   22篇
  2005年   13篇
  2004年   10篇
  2003年   7篇
  2002年   8篇
  2001年   5篇
  2000年   8篇
  1999年   4篇
  1998年   5篇
  1997年   3篇
  1996年   8篇
  1995年   8篇
  1994年   7篇
  1993年   6篇
  1992年   3篇
  1991年   5篇
  1990年   6篇
  1989年   5篇
  1988年   2篇
  1987年   6篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1983年   3篇
  1982年   1篇
  1978年   1篇
排序方式: 共有476条查询结果,搜索用时 15 毫秒
101.
Theories on the neurochemical etiology for hepatic encephalopathy have recently focussed on activation of inhibitory neurotransmitter GABA systems. Modulators of the GABAA receptor complex, including diazepam binding inhibitor, are significantly and selectively altered in hepatic encephalopathy. In animals and humans, benzodiazepine receptor antagonists rapidly ameliorate this syndrome suggesting the possible existence of an endogenous benzodiazepine-like substance. Endogenous GABAergic modulators may contribute to the neurochemical pathogenesis of hepatic encephalopathy.Special issue dedicated to Dr. Erminio Costa  相似文献   
102.
The content of the tryptophan metabolites quinolinic acid (QUIN), 5-hydroxytryptamine (5-HT), and 5-hydroxyindoleacetic acid (5-HIAA) was measured in various brain areas of rats bearing a portocaval anastomosis (PCA) for 4 weeks, using mass fragmentography or HPLC. In these animals, the content of the excitotoxic compound QUIN increased by 75% in the cortex and 125% in the cerebellum. The content of 5-HT increased by 27% in the brainstem. No changes occurred in other brain areas. On the other hand, the content of 5-HIAA increased by 66% in the cortex, 65% in the caudate, 64% in the hippocampus, 120% in the diencephalon, and 185% in the brainstem. Probenecid administration caused a larger increase of 5-HIAA accumulation in various brain areas of PCA-bearing rats than in those of sham-operated controls. The cortical content of QUIN and 5-HIAA increased after administration of ammonium acetate (7 mmol/kg), whereas an equimolar amount of sodium acetate was inactive. These results confirm that profound changes in the disposition of tryptophan occur in the brains of experimental animals used as models of hepatic encephalopathy. Furthermore, this study adds the excitotoxic compound QUIN to the list of molecules possibly involved in the pathogenesis of this brain disorder.  相似文献   
103.
The substrate and cofactor requirements and some kinetic properties of the alpha-ketoglutarate dehydrogenase complex (KGDHC; EC 1.2.4.2, EC 2.3.1.61, and EC 1.6.4.3) in purified rat brain mitochondria were studied. Brain mitochondrial KGDHC showed absolute requirement for alpha-ketoglutarate, CoA and NAD, and only partial requirement for added thiamine pyrophosphate, but no requirement for Mg2+ under the assay conditions employed in this study. The pH optimum was between 7.2 and 7.4, but, at pH values below 7.0 or above 7.8, KGDHC activity decreased markedly. KGDHC activity in various brain regions followed the rank order: cerebral cortex greater than cerebellum greater than or equal to midbrain greater than striatum = hippocampus greater than hypothalamus greater than pons and medulla greater than olfactory bulb. Significant inhibition of brain mitochondrial KGDHC was noted at pathological concentrations of ammonia (0.2-2 mM). However, the purified bovine heart KGDHC and KGDHC activity in isolated rat heart mitochondria were much less sensitive to inhibition. At 5 mM both beta-methylene-D,L-aspartate and D,L-vinylglycine (inhibitors of cerebral glucose oxidation) inhibited the purified heart but not the brain mitochondrial enzyme complex. At approximately 10 microM, calcium slightly stimulated (by 10-15%) the brain mitochondrial KGDHC. At concentrations above 100 microM, calcium (IC50 = 1 mM) inhibited both brain mitochondrial and purified heart KGDHC. The present results suggest that some of the kinetic properties of the rat brain mitochondrial KGDHC differ from those of the purified bovine heart and rat heart mitochondrial enzyme complexes. They also suggest that the inhibition of KGDHC by ammonia and the consequent effect on the citric acid cycle fluxes may be of pathophysiological and/or pathogenetic importance in hyperammonemia and in diseases (e.g., hepatic encephalopathy, inborn errors of urea metabolism, Reye's syndrome) where hyperammonemia is a consistent feature. Brain accumulation of calcium occurs in a number of pathological conditions. Therefore, it is possible that such a calcium accumulation may have a deleterious effect on KGDHC activity.  相似文献   
104.
Regional Cerebral Glucose Utilization in Rats with Portacaval Anastomosis   总被引:5,自引:3,他引:2  
Regional cerebral glucose utilization was measured using [2-14C]glucose in rats with an end-to-side portacaval anastomosis. The experiments were conducted in two groups of rats 4 to 8 weeks after portacaval shunting was established. One group was paralyzed and given N2O:O2 (70:30), whereas the other was conscious, unstressed, and unaware of the experiment. In both groups the rate of glucose utilization was decreased in almost all brain structures by an average of 20% after portacaval shunting. The results showed definitively that cerebral energy metabolism was reduced at a time when there were no obvious neurological abnormalities.  相似文献   
105.
106.
107.
Abstract Octanoic acid has been implicated in the pathogenesis of cytotoxic cerebral edema in Reye's syndrome. Using astrocytes from primary culture, we studied the dose-dependent effects of octanoate on cellular volume regulation and metabolism. Astrocyte volume recovery following hypoosmotic swelling was stimulated by 1.0 m M octanoate and inhibited by 3.0 m M octanoate. Parallel effects were obtained at these concentrations on the activity of the Na+,K+-depen-dent ATPase. Cellular ATP concentrations also were reduced 36% with the higher octanoate concentration. These effects of octanoate may contribute to the severe astrocyte swelling observed in the brains of Reye's syndrome patients.  相似文献   
108.
摘要 目的:探讨早期综合康复联合穴位按摩对缺氧缺血性脑病(HIE)患儿智力发育、生长发育和血清脑组织损伤标志物的影响。方法:选取2016年1月- 2021年12月期间西安医学院第二附属医院收治的126例HIE患儿作为观察对象。根据双色球法将患儿分为对照组和观察组,其中对照组63例,在常规治疗基础上联合早期综合康复;观察组63例,在常规治疗基础上接受早期综合康复联合穴位按摩。对比两组患儿临床症状恢复时间、智力发育、生长发育、神经系统后遗症发生率、神经功能和血清脑组织损伤标志物变化。结果:观察组的原始反射、肌张力、意识、可吸吮、眼部运动功能恢复时间及呼吸衰竭纠正时间均短于对照组(P<0.05)。两组干预1个月后体质量、身高、摄入奶量较干预前升高,且观察组的变化大于对照组(P<0.05)。两组干预1个月后精细运动、大运动、适应性、语言及社交能力较干预前升高,且观察组的变化大于对照组(P<0.05)。两组干预1个月后神经元特异性烯醇化酶(NSE)、髓鞘碱性蛋白(MBP)、S100β蛋白较干预前下降,新生儿神经行为(NABA)评分较干预前升高,且观察组的变化大于对照组(P<0.05)。观察组神经系统后遗症发生率较对照组低(P<0.05)。结论:早期综合康复联合穴位按摩可促进HIE患儿智力发育、生长发育,减轻脑损伤,降低神经系统后遗症发生风险。  相似文献   
109.
Attractin (ATRN) and Attractin-like 1 (ATRNL1) are highly similar type I transmembrane proteins. Atrn null mutant mice have a pleiotropic phenotype including dark fur, juvenile-onset spongiform neurodegeneration, hypomyelination, tremor, and reduced body weight and adiposity, implicating ATRN in numerous biological processes. Bioinformatic analysis indicated that Atrn and Atrnl1 arose from a common ancestral gene early in vertebrate evolution. To investigate the genetics of the ATRN system and explore potential redundancy between Atrn and Atrnl1, we generated and characterized Atrnl1 loss- and gain-of-function mutations in mice. Atrnl1 mutant mice were grossly normal with no alterations of pigmentation, central nervous system pathology or body weight. Atrn null mutant mice carrying a beta-actin promoter-driven Atrnl1 transgene had normal, agouti-banded hairs and significantly delayed onset of spongiform neurodegeneration, indicating that over-expression of ATRNL1 compensates for loss of ATRN. Thus, the two genes are redundant from the perspective of gain-of-function but not loss-of-function mutations.  相似文献   
110.
Prion diseases are neurodegenerative diseases that can be transmitted between individuals. The exact cause of these diseases remains unknown. However, one of the key events associates with the disease is the aggregation of a cellular protein, the prion protein. The mechanism of this is still unclear. However, it is likely that the aggregation is trigged by a seeding mechanism in which an oligomer of the prion protein is able to catalyse polymerisation of further prion protein into larger aggregates. We have developed a model of this process using an oligomeric species generated from recombinant protein by exposure to manganese. On fractionation of the seeding species, we estimated that the smallest size the oligomer would be is an octomer. We analysed the catalytic mechanism of the seeding oligomer and its interaction with substrate. Different domains of the protein are necessary for the seeding ability of the prion protein as opposed to those required for it to form a substrate for the polymerisation reaction. Prion seeds formed from different sheep alleles are able to reproduce the characteristics of scrapie in terms of resistance to disease. However, we were also able to generate prion seed from chicken PrP a species where no prion disease is known. Our findings provide an insight into the aggregation process of the prion protein and its potential relation to disease progress.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号