首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1822篇
  免费   118篇
  国内免费   58篇
  2024年   3篇
  2023年   30篇
  2022年   44篇
  2021年   44篇
  2020年   33篇
  2019年   33篇
  2018年   75篇
  2017年   32篇
  2016年   31篇
  2015年   54篇
  2014年   122篇
  2013年   119篇
  2012年   67篇
  2011年   95篇
  2010年   111篇
  2009年   101篇
  2008年   109篇
  2007年   140篇
  2006年   96篇
  2005年   90篇
  2004年   72篇
  2003年   53篇
  2002年   53篇
  2001年   38篇
  2000年   26篇
  1999年   25篇
  1998年   30篇
  1997年   23篇
  1996年   22篇
  1995年   16篇
  1994年   18篇
  1993年   21篇
  1992年   13篇
  1991年   10篇
  1990年   12篇
  1989年   10篇
  1988年   10篇
  1987年   9篇
  1986年   10篇
  1985年   6篇
  1984年   15篇
  1983年   18篇
  1982年   16篇
  1981年   16篇
  1980年   12篇
  1979年   5篇
  1978年   4篇
  1977年   2篇
  1971年   2篇
  1970年   1篇
排序方式: 共有1998条查询结果,搜索用时 18 毫秒
941.
942.
RHBDL2, a human homolog of the rhomboids, belongs to a unique class of serine intramembrane proteases; little is known about its function and regulation. Here, we show that RHBDL2 is produced as a proenzyme and that the processing of RHBDL2 is required for its cellular protease activity. The processing of RHBDL2 was shown by both Western blot and immunofluorescence analysis. We have demonstrated that a highly conserved Arg residue on loop 1 of RHBDL2 plays a critical role in the activation of the proenzyme. The activation of RHBDL2 is catalyzed by a protease that is sensitive to a class of sulfonamide compounds. Furthermore, endogenous RHBDL2 exists as the processed form and treatment of cells with a sulfonamide inhibitor led to an accumulation of the full length of RHBDL2. Therefore, this study has demonstrated that RHBDL2 activity is regulated by proenzyme activation, revealed a role for the conserved WR residues in loop 1 in RHBDL2 activity, and provided critical insights into the regulation and function of this human rhomboid protease.  相似文献   
943.
The insect head is composed of several segments. During embryonic development, the segments fuse to form a rigid head capsule where obvious segmental boundaries are lacking. Hence, the assignment of regions of the insect head to specific segments is hampered, especially with respect to dorsal (vertex) and lateral (gena) parts. We show that upon Tribolium labial (Tc-lab) knock down, the intercalary segment is deleted but not transformed. Furthermore, we find that the intercalary segment contributes to lateral parts of the head cuticle in Tribolium. Based on several additional mutant and RNAi phenotypes that interfere with gnathal segment development, we show that these segments do not contribute to the dorsal head capsule apart from the dorsal ridge. Opposing the classical view but in line with findings in the vinegar fly Drosophila melanogaster and the milkweed bug Oncopeltus fasciatus, we propose a “bend and zipper” model for insect head capsule formation.  相似文献   
944.
Activation of interleukin-1 family receptor ST2L by its ligand interleukin-33 (IL-33) is an important component in inflammatory responses. Peripheral blood basophils, recognized as major effector cells in allergic inflammation that play a role in both innate and adaptive immunity, are activated by IL-33 through ST2L. However, studies are challenging due to the paucity of this cell population, representing less than 1% of peripheral blood leukocytes. We identified a basophil-like chronic myelogenous leukemia cell line, KU812, that constitutively expresses ST2L and demonstrates functional responses to IL-33 stimulation. IL-33 induced production of multiple inflammatory mediators in KU812 cells that were blocked by anti-ST2L and anti-IL-33 antibodies. The interaction of IL-33 and ST2L activated NF-κB, JNK, and p38 MAPK, but not ERK1/2 signaling pathways. Studies using pharmacological inhibitors to IKK-2 and MAP kinases revealed that one of the functional responses, IL-33-induced IL-13 production, was regulated through NF-κB, but not JNK or p38 MAPK signaling. The requirement of NF-κB was confirmed by IKK-2 knockdown using shRNA. KU812 represents the first human cell line-based in vitro model of the IL-33/ST2L axis and provides a valuable tool to aid in understanding the mechanism and significance of IL-33 and ST2L interaction and function.  相似文献   
945.
Heparin Binding Hemagglutinin A (HBHA) is hitherto the sole virulence factor associated with tuberculosis dissemination from the lungs, the site of primary infection, to epithelial cells. We have previously reported the solution structure of HBHA, a dimeric and elongated molecule. Since oligomerisation of HBHA is associated with its ability to induce bacterial agglutination, we investigated this process using experimental and modelling techniques. We here identified a short segment of HBHA whose presence is mandatory for the stability of folded conformation, whose denaturation is a reversible two-state process. Our data suggest that agglutination-driven cell-cell interactions do not occur via association of HBHA monomers, nor via association of HBHA dimers and open the scenario to a possible trans-dimerisation process.

Structured summary

MINT-7709940, MINT-7709948: HBHA (uniprotkb:A5TZK3) and HBHA (uniprotkb:A5TZK3) bind (MI:0407) by circular dichroism (MI:0016)MINT-7709966: HBHA (uniprotkb:A5TZK3) and HBHA (uniprotkb:A5TZK3) bind (MI:0407) by biophysical (MI:0013)MINT-7709955: HBHA (uniprotkb:A5TZK3) and HBHA (uniprotkb:A5TZK3) bind (MI:0407) by dynamic light scattering (MI:0038)  相似文献   
946.
Ravi Maddaly  Govind Pai 《FEBS letters》2010,584(24):4883-4894
During the last three decades, a number of B-lymphocyte specific surface antigens have been defined some of which may also show activation/differentiation specific expression. Here, we review the various signaling events and the receptor-ligand interactions for B-cell development, activation and differentiation. Our discussion and presentation include reviewing the in vivo and in vitro mechanisms. Focus is on the experiments that give us valuable insights into the B cell signaling mechanisms in vitro. Three significant pathways in B-cell development - c-Kit, FLT-3 and IL-7 signaling pathways are elucidated upon. Both antigen dependent and antigen independent mechanisms of B cell stimulation are also reviewed.  相似文献   
947.
The evolution of protein folds is under strong constraints from their surrounding environment. Although folding in water‐soluble proteins is driven primarily by hydrophobic forces, the nature of the forces that determine the folding and stability of transmembrane proteins are still not fully understood. Furthermore, the chemically heterogeneous lipid bilayer has a non‐uniform effect on protein structure. In this article, we attempt to get an insight into the nature of this effect by examining the impact of various types of local structure environment on amino acid substitution, based on alignments of high‐resolution structures of polytopic helical transmembrane proteins combined with sequences of close homologs. Compared to globular proteins, burying amino acid sidechains, especially hydrophilic ones, led to a lower increase in conservation in both the lipid‐water interface region and the hydrocarbon core region. This observation is due to surface residues in HTM proteins especially in the HC region being relatively highly conserved, suggesting higher evolutionary constraints from their specific interactions with the surrounding lipid molecules. Polar and small residues, particularly Pro and Gly, show a noticeable increase in conservation as they are positioned more towards the centre of the membrane, which is consistent with their recognized key roles in structural stability. In addition, the examination of hydrogen bonds in the membrane environment identified some exposed hydrophilic residues being better conserved when not hydrogen‐bonded to other residues, supporting the importance of lipid‐protein sidechain interactions. The conclusions presented in this study highlight the distinct features of substitution matrices that take into account the membrane environment, and their potential role in improving sequence‐structure alignments of transmembrane proteins. Proteins 2010; © 2010 Wiley‐Liss, Inc.  相似文献   
948.

Background and Aims

The rate of photosynthesis in paddy rice often decreases at noon on sunny days because of water stress, even under submerged conditions. Maintenance of higher rates of photosynthesis during the day might improve both yield and dry matter production in paddy rice. A high-yielding indica variety, ‘Habataki’, maintains a high rate of leaf photosynthesis during the daytime because of the higher hydraulic conductance from roots to leaves than in the standard japonica variety ‘Sasanishiki’. This research was conducted to characterize the trait responsible for the higher hydraulic conductance in ‘Habataki’ and identified a chromosome region for the high hydraulic conductance.

Methods

Hydraulic conductance to passive water transport and to osmotic water transport was determined for plants under intense transpiration and for plants without transpiration, respectively. The varietal difference in hydraulic conductance was examined with respect to root surface area and hydraulic conductivity (hydraulic conductance per root surface area, Lp). To identify the chromosome region responsible for higher hydraulic conductance, chromosome segment substitution lines (CSSLs) derived from a cross between ‘Sasanishiki’ and ‘Habataki’ were used.

Key Results

The significantly higher hydraulic conductance resulted from the larger root surface area not from Lp in ‘Habataki’. A chromosome region associated with the elevated hydraulic conductance was detected between RM3916 and RM2431 on the long arm of chromosome 4. The CSSL, in which this region was substituted with the ‘Habataki’ chromosome segment in the ‘Sasanishiki’ background, had a larger root mass than ‘Sasanishiki’.

Conclusions

The trait for increasing plant hydraulic conductance and, therefore, maintaining the higher rate of leaf photosynthesis under the conditions of intense transpiration in ‘Habataki’ was identified, and it was estimated that there is at least one chromosome region for the trait located on chromosome 4.  相似文献   
949.
利用内含肽(intein)的蛋白质反式剪接技术,研究双载体真核细胞转囊性纤维化跨膜电导调节体(CFTR)基因,通过翻译后连接成为完整的功能性CFTR蛋白.应用基因重组技术,将人CFTRcDNA于剪接反应所需保守残基Ser660前断裂为N端和C端两部分,分别与split Ssp DnaB intein编码序列融合,构建到真核表达载体pEGFP-N1和pEYFP-N1.用脂质体将这对载体共转染至幼年仓鼠肾细胞(BHK),48h后Western印迹观察CFTR蛋白质的连接,并用全细胞和单通道膜片钳技术记录Cl-通道电流.基因共转染细胞可观察到明显的由蛋白质反式剪接形成的完整CFTR蛋白,膜片钳记录到较高的全细胞Cl-电流和与转野生型CFTR基因细胞相似的单Cl-通道开放活性,提示CFTR功能的恢复.内含肽可作为一种技术策略用于双载体转CFTR基因,为应用双腺相关病毒载体(AAV)转基因的囊性纤维化疾病(CF)基因治疗提供了依据.  相似文献   
950.
跨膜蛋白16A:钙激活氯通道的最新进展   总被引:2,自引:0,他引:2  
钙激活氯离子通道(calcium-activated chloride channels,CaCCs)介导了众多生理过程,包括跨上皮离子与液体分泌、心肌和神经兴奋、感觉传导、平滑肌收缩和受精过程等,但目前对于其分子基础等重要问题尚未研究清楚.综述了最新报道的CaCCs分子基础跨膜蛋白16A(TMEM16A)的发现过程、基因结构和功能、离子通道电生理特性、相关病理与药理功能的一些热点问题,并展望了该研究领域的发展趋势.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号