首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5898篇
  免费   790篇
  国内免费   257篇
  2024年   31篇
  2023年   72篇
  2022年   121篇
  2021年   111篇
  2020年   221篇
  2019年   262篇
  2018年   304篇
  2017年   216篇
  2016年   233篇
  2015年   241篇
  2014年   310篇
  2013年   394篇
  2012年   190篇
  2011年   242篇
  2010年   211篇
  2009年   235篇
  2008年   274篇
  2007年   292篇
  2006年   252篇
  2005年   253篇
  2004年   218篇
  2003年   192篇
  2002年   195篇
  2001年   126篇
  2000年   131篇
  1999年   138篇
  1998年   131篇
  1997年   115篇
  1996年   94篇
  1995年   102篇
  1994年   92篇
  1993年   85篇
  1992年   108篇
  1991年   83篇
  1990年   78篇
  1989年   68篇
  1988年   75篇
  1987年   63篇
  1986年   42篇
  1985年   61篇
  1984年   70篇
  1983年   42篇
  1982年   47篇
  1981年   39篇
  1980年   28篇
  1979年   17篇
  1978年   16篇
  1977年   6篇
  1976年   8篇
  1974年   6篇
排序方式: 共有6945条查询结果,搜索用时 15 毫秒
51.
本工作用二种离子通道阻断剂四乙胺(TEA)和河豚毒素(TTX)来研究 Na~+、K~+通道的改变对大鼠黄体细胞孕酮生成的影响。10~(-3)mol/L 的 TEA 或 TTX 均使孕酮分泌量显著增加,而这种促进效应可被酪氨酸(Tyr)完全阻断。Tyr 对 TEA 或 TTX 与 hCG 联合所引起的孕酮分泌也有抑制作用。上述实验说明跨黄体细胞内外的 K~+和 Na~+浓度差与孕酮分泌有关。  相似文献   
52.
When acutely transferred to diluted seawater (SW), Procephalothrix spiralis and Clitellio arenarius regulate water content (g H2O/g solute free dry wt = s.f.d.w.) via loss of Na and Cl (µmoles/g.s.f.d.w.). The present study extends these observations to a greater range of salinities and determines the effects of long-term, stepwise acclimation to diluted seawaters. Final exposure to a given experimental seawater (70, 50, 30, 15%) was 48 hours. Osmolality (mOsm/kg H2O) and Na, K, and Cl ion concentrations (mEq/l) were determined in total tissue water and in the extracellular fluid of C. arenarius. Extracellular volume was determined as the 14C-polyethylene glycol space. Both species behaved as hyperosmotic conformers in diluted seawaters. However, reduction of the osmotic gradient between worm and medium occurred in P. spiralis, but not C. arenarius, in 30 and 15% SW. In both species, osmolality and Na, Cl, and K concentrations in total tissue water decreased with increased dilution of the SW. Water content increased with dilution of the medium but was lower than that which would be predicted based on approximation of the van't Hoff relation. This indicated the occurrence of regulatory volume decrease (RVD). In P. spiralis, in 70 or 50% SW, RVD was accompanied by loss of Na and Cl contents. However, in 30 or 15% SW, Na and Cl contents increased and in worms in 15% SW K content decreased. The latter movements of Na, Cl and K are indicative of cellular hysteresis and were associated with decreased viability, indicating the lower limits of regulatory ability in this species. In comparison, RVD in C. arenarius occurred in all diluted seawaters and was accompanied by loss of Na and Cl contents. In C. arenarius, evidence for reduced viability was absent. Removal of the supra- and subesophageal ganglia of C. arenarius resulted in retention of water, Na and Cl (g H2O or µmoles/g s.f.d.w.) in worms acclimated to 70% SW. Removal of the cerebral ganglia and cephalic glands of P. spiralis did not significantly influence regulation of water content.  相似文献   
53.
The effect of membrane potential on the activity of the ATP-dependent Ca2+ pump of isolated canine ventricular sarcolemmal vesicles were investigated. The membrane potential was controlled by the intravesicular and extravesicular concentration of K+, and the initial rates of Ca2+ uptake both in the presence and the absence of valinomycin were determined. The rate of Ca2+ uptake was stimulated by a inside-negative potential induced in the presence of valinomycin. The valinomycin-dependent stimulation was enhanced by the addition of K+ channel blocker, tetraethylammonium ion or Ba2+. The electrogenicity of cardiac sarcolemmal ATP-dependent Ca2+ pump is suggested from the increase of Ca2+ uptake by negative potential induced by valinomycin.  相似文献   
54.
The components of magnesium efflux in squid axons have been studied under internal dialysis and voltage clamp conditions. The present report rules out the existence of an ATP-dependent, Na0- and Mg0-independent Mg2+ efflux (ATP-dependent Mg2+ pump) leaving the Mg2+---Na+ exchange system as the only mechanism for Mg2+ extrusion. The main features of the Mg2+ efflux are: (1) The efflux is completely dependent on ATP. (2) The efflux can be activated either by external Na+ (forward Mg2+---Na+ exchange) or external Mg2+ (Mg2+---Mg2+ exchange). (3) The mobility of the Mg2+ exchanger in the Na0+-loaded form is greater than that in the Mg2+-loaded one. (4) In variance with the Na+---Ca2+ exchange mechanism, Mg2+---Mg2+ exchange is not activated by external monovalent cations. (5) ATPγS replaces ATP in activating Mg2+---Na+ exchange suggesting that a phosphorylation/dephosphorylation process regulates this transport mechanism.  相似文献   
55.
Myocardial sodium-pump activity was examined from ouabain-sensitive 86Rb+ uptake using myocytes isolated from guinea-pig heart. Either sodium loading or the sodium ionophore, monensin, increased 86Rb+ uptake by over 400%, indicating that the amount of Na+ available to the pump is the primary determinant of its activity, and that the sodium pump has a substantial reserve capacity in quiescent myocytes. Moreover, the degree of the above stimulation is markedly higher than corresponding values reported with multicellular preparations, suggesting that diffusion barriers make it impossible to observe the capacity of the sodium pump in the latter preparations. Removal of extracellular Ca2+ increased ouabain-sensitive 86Rb+ uptake, probably by enhancing turnover of the sodium pump rather than increasing availability of Na+ to the pump.  相似文献   
56.
Summary The viralsrc gene downregulates junctional communication, closing cell-to-cell membrane channels presumably by way of the phosphoinositide signal route. We show that TMB-8 [8-N, N-(diethylamino) octyl-3,4,5-trimethoxybenzoate] counteracts this downregulation in cells transformed by temperature-sensitive mutant Rous sarcoma virus: TMB-8 (36–72 m) raises junctional permeability when applied during activity ofsrc protein kinase, i.e., at steady permissive temperature; and TMB-8 inhibits the fall of junctional permeability, when the activity ofsrc protein kinase gets turned on. TMB-8 also (reversibly) inhibits the growth of the cells at permissive temperature and reverses the morphological changes associated with transformation. The morphological reversal lags several hours behind the junctional-permeability reversal. Communication recovers within a few minutes when the activity of thesrc protein kinase is turned off (in absence of TMB-8). Sodium orthovanadate (20 m) prevents this recovery, but it has no major effect on junctional permeability on its own. We discuss possible modes of action of these agents on critical stages of the signal route, related to intracellular Ca2+ and protein kinase C.  相似文献   
57.
Summary Na–K–Cl cotransport stoichiometry and affinities for Na, K and Cl were determined in flounder intestine. Measurement of simultaneous NaCl and RbCl influxes resulted in ratios of 2.2 for Cl/Na and 1.8 for Cl/Rb. The effect of Na and Rb on Rb influx showed first order kinetics withK 1/2 values of 5 and 4.5mm and Hill coefficients of 0.9 and 1.2, respectively. The effect of Cl on rubidium influx showed a sigmoidal relationship withK 1/2 of 20mm and a Hill coefficient of 2.0. The effects of variations in Na and Cl concentration on short-circuit current (I sc) were also determined. TheK 1/2 for Na was 7mm with a Hill coefficient of 0.9 and theK 1/2 for Cl was 46mm with a Hill coefficient of 1.9. Based on the simultaneous influx measurements, a cotransport stoichiometry of 1Na1K2Cl is concluded. The Hill coefficients for Cl suggest a high degree of cooperativity between Cl binding sites. Measurements of the ratio of net Na and Cl transepithelial fluxes under short-circuit conditions (using a low Na Ringer solution to minimize the passive Na flux) indicate that the Cl/Na flux ratio is approximately 21. Therefore Na recycling from serosa to mucosa does not significantly contribute to theI sc. Addition of serosal ouabain (100 m) inhibited Rb influx, indicating that Na–K–Cl cotransport is inhibited by ouabain. This finding suggests that a feedback mechanism exists between the Na–K-ATPase on the basolateral membrane and the apical Na–K–2Cl cotransporter.  相似文献   
58.
Summary The E1 subgroup (E1, A, Ib, etc.) of antibacterial toxins called colicins are known to form voltage-dependent channels in planar lipid bilayers. The genes for colicins E1, A and Ib have been cloned and sequenced, making these channels interesting models for the widespread phenomenon of voltage dependence in cellular channels. In this paper we investigate ion selectivity and channel size—properties relevant to model building. Our major finding is that the colicin E1 channel is large, having a diameter ofat least 8 Å at its narrowest point. We established this from measurements of reversal potentials for gradients formed by salts of large cations or large anions. In so doing, we exploited the fact that the colicin channel is permeable to both cations and anions, and its relative selectivity to them is a functions and anions, and its relative selectivity to them is a function of pH. The channel is anion selective (Cl over K+) in neutral membranes, and the degree of selectivity is highly dependent on pH. In negatively charged membranes, it becomes cation selective at pH's higher than about 5. Experiments with pH gradients cross the membrane suggest that titratable groups both within the channel lumen and near the channel ends affect the selectivity. Individual E1 channels have more than one open conductance state, all displaying comparable ion selectivity. Colicins A and Ib also exhibit pH-dependent ion selectivity, and appear to have even larger lumens than E1.  相似文献   
59.
Summary In the intact, in vitro frog skin, isoproterenol (ISO) stimulates and amiloride-insensitive increase in short-circuit current (SCC) that can be localized to the exocrine glands and is associated with secretion of chloride. To determine which cells in the glands respond to stimulation we measured the intracellular electrolyte concentrations of the various cell types of the mucous and seromucous glands of the skin using freeze-dried cryosections and electron microprobe analysis. In the resting state, the various cell types of the glands have intracellular electrolyte concentrations similar to the epithelial cells of the skin. Exposure to amiloride (10–4 m) has little effect on the concentration of Na and Cl in the cells of the glands. The effect of isoproterenol has two distinct phases. Analysis of glands in tissues frozen at the peak of the SCC response (13 min after addition of isoproterenol) shows that the only significant change is an increase in Na and Ca in a group of cells at the ductal pole of the acini of both gland types. These are termed gland cells. The duct cells and cells that secrete macromolecules did not show any significant changes at this timepoint. In the gland cells, after a one-hour exposure to isoproterenol the Na concentration is at prestimulation levels while Cl drops. There is also a smaller drop in Cl in the duct and skin epithelial cells. Ouabain, which can completely block the isoproterenol SCC response, has little short-term effect on Na and Cl in the control gland but accentuates the gain of Na and drop in Cl in the isoproterenol-treated condition. Bumetanide and, to a lesser extent, furosemide, also blocks the isoproterenol SCC response and causes a further drop in Cl. The results provide indirect evidence that a major portion of the ionic component of the gland secretion is produced by a distinct group of cells separate from those producing the macromolecular component and that the mechanism of secretion involves a Na:Cl coupled transport system linked to the activity of the basolateral Na pump.  相似文献   
60.
Summary The permeability and partition coefficients of tetraphenylarsonium (TPA) and several other organic cations were studied in the human erythrocyte using an ion-selective electrode. The permeability constant for the different cations could be explained quite well by differences in oil/water partition coefficients. No evidence for facilitated transport could be found. Binding of the organic ions occurred to both the cell membrane and to intracellular contents. Partitioning to the membrane remained relatively constant despite variation from ion intracellular binding with blood samples from different donors. TPA flux is stimulated by substoichiometric amounts of tetraphenylboron and other organic anions, suggesting an ion-pairing mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号