全文获取类型
收费全文 | 1460篇 |
免费 | 85篇 |
国内免费 | 46篇 |
专业分类
1591篇 |
出版年
2024年 | 2篇 |
2023年 | 21篇 |
2022年 | 38篇 |
2021年 | 36篇 |
2020年 | 24篇 |
2019年 | 32篇 |
2018年 | 64篇 |
2017年 | 18篇 |
2016年 | 18篇 |
2015年 | 45篇 |
2014年 | 108篇 |
2013年 | 102篇 |
2012年 | 54篇 |
2011年 | 77篇 |
2010年 | 92篇 |
2009年 | 89篇 |
2008年 | 90篇 |
2007年 | 118篇 |
2006年 | 79篇 |
2005年 | 70篇 |
2004年 | 51篇 |
2003年 | 37篇 |
2002年 | 34篇 |
2001年 | 30篇 |
2000年 | 23篇 |
1999年 | 18篇 |
1998年 | 25篇 |
1997年 | 20篇 |
1996年 | 16篇 |
1995年 | 16篇 |
1994年 | 17篇 |
1993年 | 17篇 |
1992年 | 11篇 |
1991年 | 5篇 |
1990年 | 9篇 |
1989年 | 5篇 |
1988年 | 5篇 |
1987年 | 5篇 |
1986年 | 9篇 |
1985年 | 5篇 |
1984年 | 12篇 |
1983年 | 13篇 |
1982年 | 10篇 |
1981年 | 7篇 |
1980年 | 7篇 |
1979年 | 2篇 |
1978年 | 2篇 |
1977年 | 1篇 |
1976年 | 1篇 |
1971年 | 1篇 |
排序方式: 共有1591条查询结果,搜索用时 15 毫秒
71.
72.
Vasiliki Kosti 《Journal of molecular biology》2010,397(5):1132-39605
In the UapA uric acid-xanthine permease of Aspergillusnidulans, subtle interactions between key residues of the putative substrate binding pocket, located in the TMS8-TMS9 loop (where TMS is transmembrane segment), and a specificity filter, implicating residues in TMS12 and the TMS1-TMS2 loop, are critical for function and specificity. By using a strain lacking all transporters involved in adenine uptake (ΔazgA ΔfcyB ΔuapC) and carrying a mutation that partially inactivates the UapA specificity filter (F528S), we obtained 28 mutants capable of UapA-mediated growth on adenine. Seventy-two percent of mutants concern replacements of a single residue, R481, in the putative cytoplasmic loop TMS10-TMS11. Five missense mutations are located in TMS9, in TMS10 or in loops TMS1-TMS2 and TMS8-TMS9. Mutations in the latter loops concern residues previously shown to enlarge UapA specificity (Q113L) or to be part of a motif involved in substrate binding (F406Y). In all mutants, the ability of UapA to transport its physiological substrates remains intact, whereas the increased capacity for transport of adenine and other purines seems to be due to the elimination of elements that hinder the translocation of non-physiological substrates through UapA, rather than to an increase in relevant binding affinities. The additive effects of most novel mutations with F528S and allele-specific interactions of mutation R481G (TMS10-TMS11 loop) with Q113L (TMS1-TMS2 loop) or T526M (TMS12) establish specific interdomain synergy as a critical determinant for substrate selection. Our results strongly suggest that distinct domains at both sides of UapA act as selective dynamic gates controlling substrate access to their translocation pathway. 相似文献
73.
Anion exchanger 1 (AE1 or band 3) is responsible for Cl−-HCO3− exchange on erythrocyte membrane. Previously, we showed that band 3 is fixed in an inward-facing conformation by specific modification of His 834 with DEPC, resulting in a strong inhibition of its anion transport activity. To clarify the physiological role of His 834, we evaluated the sulfate transport activities of various band 3 mutants: different mutants at His 834 and alanine mutants of peripheral residues around 834 (Lys 829-Phe 836) in yeast cell membranes. The Km values of the His 834 mutants were 4-10 times higher than that of the wild type, while their Vmax values were barely lower than that of wild type. Meanwhile, the Km values of the peripheral alanine mutants were only slightly increased. These data suggest that His 834 is critically important for the efficient binding of sulfate anion, but not for the conformational change induced by substrate binding. 相似文献
74.
Teresa Duda Rameshwar K. Sharma 《Biochemical and biophysical research communications》2010,391(3):1379-241
In a subset of the olfactory sensory neurons ONE-GC$ membrane guanylate cyclase is a central component of two odorant-dependent cyclic GMP signaling pathways. These odorants are uroguanylin and CO2. The present study was designed to decipher the biochemical and molecular differences between these two odorant signaling mechanisms. The study shows (1) in contrast to uroguanylin, CO2 transduction mechanism is Ca2+-independent. (2) CO2 transduction site, like that of uroguanylin-neurocalcin δ, resides in the core catalytic domain, aa 880-1028, of ONE-GC. (3) The site, however, does not overlap the signature neurocalcin δ signal transduction domain, 908LSEPIE913. Finally, (4) this study negates the prevailing concept that CO2 uniquely signals ONE-GC activity (Sun et al. [19]; Guo et al. [21]). It demonstrates that it also signals the activation of photoreceptor membrane guanylate cyclase ROS-GC1. These results show an additional new transduction mechanism of the membrane guanylate cyclases and broaden our understanding of the molecular mechanisms by which different odorants using a single guanylate cyclase can regulate diverse cyclic GMP signaling pathways. 相似文献
75.
BtuB is a β‐barrel membrane protein that facilitates transport of cobalamin (vitamin B12) from the extracellular medium across the outer membrane of Escherichia coli. It is thought that binding of B12 to BtuB alters the conformation of its periplasm‐exposed N‐terminal residues (the TonB box), which enables subsequent binding of a TonB protein and leads to eventual uptake of B12 into the cytoplasm. Structural studies determined the location of the B12 binding site at the top of the BtuB's β‐barrel, surrounded by extracellular loops. However, the structure of the loops was found to depend on the method used to obtain the protein crystals, which—among other factors—differed in calcium concentration. Experimentally, calcium concentration was found to modulate the binding of the B12 substrate to BtuB. In this study, we investigate the effect of calcium ions on the conformation of the extracellular loops of BtuB and their possible role in B12 binding. Using all‐atom molecular dynamics, we simulate conformational fluctuations of several X‐ray structures of BtuB in the presence and absence of calcium ions. These simulations demonstrate that calcium ions can stabilize the conformation of loops 3–4, 5–6, and 15–16, and thereby prevent occlusion of the binding site. Furthermore, binding of calcium ions to extracellular loops of BtuB was found to enhance correlated motions in the BtuB structure, which is expected to promote signal transduction. Finally, we characterize conformation dynamics of the TonB box in different X‐ray structures and find an interesting correlation between the stability of the TonB box structure and calcium binding. Proteins 2010. © 2009 Wiley‐Liss, Inc. 相似文献
76.
Differential backbone dynamics of companion helices in the extended helical coiled‐coil domain of a bacterial chemoreceptor 下载免费PDF全文
Nicholas L. Bartelli Gerald L. Hazelbauer 《Protein science : a publication of the Protein Society》2015,24(11):1764-1776
Cytoplasmic domains of transmembrane bacterial chemoreceptors are largely extended four‐helix coiled coils. Previous observations suggested the domain was structurally dynamic. We probed directly backbone dynamics of this domain of the transmembrane chemoreceptor Tar from Escherichia coli using site‐directed spin labeling and electron paramagnetic resonance (EPR) spectroscopy. Spin labels were positioned on solvent‐exposed helical faces because EPR spectra for such positions reflect primarily polypeptide backbone movements. We acquired spectra for spin‐labeled, intact receptor homodimers solubilized in detergent or inserted into native E. coli lipid bilayers in Nanodiscs, characterizing 16 positions distributed throughout the cytoplasmic domain and on both helices of its helical hairpins, one amino terminal to the membrane‐distal tight turn (N‐helix), and the other carboxyl terminal (C‐helix). Detergent solubilization increased backbone dynamics for much of the domain, suggesting that loss of receptor activities upon solubilization reflects wide‐spread destabilization. For receptors in either condition, we observed an unanticipated difference between the N‐ and C‐helices. For bilayer‐inserted receptors, EPR spectra from sites in the membrane‐distal protein‐interaction region and throughout the C‐helix were typical of well‐structured helices. In contrast, for approximately two‐thirds of the N‐helix, from its origin as the AS‐2 helix of the membrane‐proximal HAMP domain to the beginning of the membrane‐distal protein‐interaction region, spectra had a significantly mobile component, estimated by spectral deconvolution to average approximately 15%. Differential helical dynamics suggests a four‐helix bundle organization with a pair of core scaffold helices and two more dynamic partner helices. This newly observed feature of chemoreceptor structure could be involved in receptor function. 相似文献
77.
R. J. Scott McCairns Louis Bernatchez 《Evolution; international journal of organic evolution》2010,64(4):1029-1047
Debate surrounding the integration of phenotypic plasticity within the neo‐Darwinian paradigm has recently intensified, but is largely dominated by conceptual abstractions. Advances in our capacities to identify candidate genes, and quantify their levels of expression, now facilitate the study of natural variation in inherently plastic traits, and may lead to a more concrete understanding of plasticity's role in adaptive evolution. We present data from parapatric threespine stickleback (Gasterosteus aculeatus) demes inhabiting geologically recent, freshwater and saltwater zones of a large estuary. Reaction norms for survival confirm adaptation to local salinity conditions. Analysis of osmoregulatory candidate gene expression within an ecological quantitative genetics framework suggests putative mechanisms underlying adaptive variation, and provides insights into the role of ancestral trait plasticity in this divergence. A sodium–potassium ATPase (ATP1A1) is identified as a candidate gene for freshwater adaptation. In addition to heritable variation for gene expression, we infer significant correlation between measures of expression and individual fitness. Overall results indicate a loss of plasticity in the freshwater deme. We discuss how this is consistent with adaptation facilitated by ancestral plasticity as a heuristic example that may prove useful for future, explicit tests of the genetic assimilation hypothesis. 相似文献
78.
Oligomerization of hepatitis C viral envelope proteins E1 and E2 is essential to virus fusion and assembly. Although interactions within the transmembrane (TM) domains of these glycoproteins have proven contributions to the E1/E2 heterodimerization process and consequent infectivity, there is little structural information on this entry mechanism. Here, as a first step towards our long-term goal of understanding the interaction between E1 and E2 TM-domains, we have expressed, purified and characterized E1-TM using structural biomolecular NMR methods. An MBP-fusion expression system yielded sufficient quantities of pure E1-TM, which was solubilized in two membrane-mimicking environments, SDS- and LPPG-micelles, affording samples amenable to NMR studies. Triple resonance assignment experiments and relaxation measurements provided information on the secondary structure and global fold of E1-TM in these environments. In SDS micelles E1-TM adopts a helical conformation, with helical stretches at residues 354–363 and 371–379 separated by a more flexible segment of residues 364–370. In LPPG micelles a helical conformation was observed for residues 354–377 with greater flexibility in the 366–367 dyad, suggesting LPPG provides a more native environment for the peptide. Replacement of key positively charged residue K370 with an alanine did not affect the secondary structure of E1-TM but did change the relative positioning within the micelle of the two helices. These results lay the foundation for structure determination of E1-TM and a molecular understanding of how E1-TM flexibility enhances its interaction with E2-TM during heterodimerization and membrane fusion. 相似文献
79.
Tuula Salo Marilena Vered Ibrahim O. Bello Pia Nyberg Carolina Cavalcante Bitu Ayelet Zlotogorski Hurvitz Dan Dayan 《Experimental cell research》2014
The research on oral cancer has focused mainly on the cancer cells, their genetic changes and consequent phenotypic modifications. However, it is increasingly clear that the tumor microenvironment (TME) has been shown to be in a dynamic state of inter-relations with the cancer cells. The TME contains a variety of components including the non-cancerous cells (i.e., immune cells, resident fibroblasts and angiogenic vascular cells) and the ECM milieu [including fibers (mainly collagen and fibronectin) and soluble factors (i.e., enzymes, growth factors, cytokines and chemokines)]. Thus, it is currently assumed that TME is considered a part of the cancerous tissue and the functionality of its key components constitutes the setting on which the hallmarks of the cancer cells can evolve. Therefore, in terms of controlling a malignancy, one should control the growth, invasion and spread of the cancer cells through modifications in the TME components. This mini review focuses on the TME as a diagnostic approach and reports the recent insights into the role of different TME key components [such as carcinoma-associated fibroblasts (CAFs) and inflammation (CAI) cells, angiogenesis, stromal matrix molecules and proteases] in the molecular biology of oral carcinoma. Furthermore, the impact of TME components on clinical outcomes and the concomitant need for development of new therapeutic approaches will be discussed. 相似文献
80.
Channelrhodopsin-2 (ChR2) is the prototype of a new class of light-gated ion channels that is finding widespread applications in optogenetics and biomedical research. We present a 6-Å projection map of ChR2, obtained by cryo-electron microscopy of two-dimensional crystals grown from pure, heterologously expressed protein. The map shows that ChR2 is the same dimer with non-crystallographic 2-fold symmetry in three different membrane crystals. This is consistent with biochemical analysis, which shows a stable dimer in detergent solution. Comparison to the projection map to bacteriorhodopsin indicates a similar structure of seven transmembrane alpha helices. Based on the projection map and sequence alignments, we built a homology model of ChR2 that potentially accounts for light-induced channel gating. Although a monomeric channel is not ruled out, comparison to other membrane channels and transporters suggests that the ChR2 channel is located at the dimer interface on the 2-fold axis, lined by transmembrane helices 3 and 4. 相似文献