首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1457篇
  免费   86篇
  国内免费   45篇
  2024年   2篇
  2023年   19篇
  2022年   38篇
  2021年   36篇
  2020年   24篇
  2019年   32篇
  2018年   64篇
  2017年   18篇
  2016年   18篇
  2015年   45篇
  2014年   108篇
  2013年   102篇
  2012年   54篇
  2011年   77篇
  2010年   92篇
  2009年   89篇
  2008年   90篇
  2007年   118篇
  2006年   79篇
  2005年   70篇
  2004年   51篇
  2003年   37篇
  2002年   34篇
  2001年   30篇
  2000年   23篇
  1999年   18篇
  1998年   25篇
  1997年   20篇
  1996年   16篇
  1995年   16篇
  1994年   17篇
  1993年   17篇
  1992年   11篇
  1991年   5篇
  1990年   9篇
  1989年   5篇
  1988年   5篇
  1987年   5篇
  1986年   9篇
  1985年   5篇
  1984年   12篇
  1983年   12篇
  1982年   10篇
  1981年   7篇
  1980年   7篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1971年   1篇
排序方式: 共有1588条查询结果,搜索用时 15 毫秒
101.
An intriguing feature of mitochondrial complex I from several species is the so-called A/D transition, whereby the idle enzyme spontaneously converts from the active (A) form to the de-active (D) form. The A/D transition plays an important role in tissue response to the lack of oxygen and hypoxic deactivation of the enzyme is one of the key regulatory events that occur in mitochondria during ischaemia. We demonstrate for the first time that the A/D conformational change of complex I does not affect the macromolecular organisation of supercomplexes in vitro as revealed by two types of native electrophoresis. Cysteine 39 of the mitochondrially-encoded ND3 subunit is known to become exposed upon de-activation. Here we show that even if complex I is a constituent of the I + III2 + IV (S1) supercomplex, cysteine 39 is accessible for chemical modification in only the D-form. Using lysine-specific fluorescent labelling and a DIGE-like approach we further identified two new subunits involved in structural rearrangements during the A/D transition: ND1 (MT-ND1) and 39 kDa (NDUFA9). These results clearly show that structural rearrangements during de-activation of complex I include several subunits located at the junction between hydrophilic and hydrophobic domains, in the region of the quinone binding site. De-activation of mitochondrial complex I results in concerted structural rearrangement of membrane subunits which leads to the disruption of the sealed quinone chamber required for catalytic turnover.  相似文献   
102.
The yeast transporter Acr3p is a low affinity As(III)/H+ and Sb(III)/H+ antiporter located in the plasma membrane. It has been shown for bacterial Acr3 proteins that just a single cysteine residue, which is located in the middle of the fourth transmembrane region and conserved in all members of the Acr3 family, is essential for As(III) transport activity. Here, we report a systematic mutational analysis of all nine cysteine residues present in the Saccharomyces cerevisiae Acr3p. We found that mutagenesis of highly conserved Cys151 resulted in a complete loss of metalloid transport function. In addition, lack of Cys90 and Cys169, which are conserved in eukaryotic members of Acr3 family, impaired Acr3p trafficking to the plasma membrane and greatly reduced As(III) efflux, respectively. Mutagenesis of five other cysteines in Acr3p resulted in moderate reduction of As(III) transport capacities and sorting perturbations. Our data suggest that interaction of As(III) with multiple thiol groups in the yeast Acr3p may facilitate As(III) translocation across the plasma membrane.  相似文献   
103.
Oligomerization of hepatitis C viral envelope proteins E1 and E2 is essential to virus fusion and assembly. Although interactions within the transmembrane (TM) domains of these glycoproteins have proven contributions to the E1/E2 heterodimerization process and consequent infectivity, there is little structural information on this entry mechanism. Here, as a first step towards our long-term goal of understanding the interaction between E1 and E2 TM-domains, we have expressed, purified and characterized E1-TM using structural biomolecular NMR methods. An MBP-fusion expression system yielded sufficient quantities of pure E1-TM, which was solubilized in two membrane-mimicking environments, SDS- and LPPG-micelles, affording samples amenable to NMR studies. Triple resonance assignment experiments and relaxation measurements provided information on the secondary structure and global fold of E1-TM in these environments. In SDS micelles E1-TM adopts a helical conformation, with helical stretches at residues 354–363 and 371–379 separated by a more flexible segment of residues 364–370. In LPPG micelles a helical conformation was observed for residues 354–377 with greater flexibility in the 366–367 dyad, suggesting LPPG provides a more native environment for the peptide. Replacement of key positively charged residue K370 with an alanine did not affect the secondary structure of E1-TM but did change the relative positioning within the micelle of the two helices. These results lay the foundation for structure determination of E1-TM and a molecular understanding of how E1-TM flexibility enhances its interaction with E2-TM during heterodimerization and membrane fusion.  相似文献   
104.
Ion channel conformational changes within the lipid membrane are a key requirement to control ion passage. Thus, it seems reasonable to assume that lipid composition should modulate ion channel function. There is increasing evidence that this implicates not just an indirect consequence of the lipid influence on the physical properties of the membrane, but also specific binding of selected lipids to certain protein domains. The result is that channel function and its consequences on excitability, contractility, intracellular signaling or any other process mediated by such channel proteins, could be subjected to modulation by membrane lipids. From this it follows that development, age, diet or diseases that alter lipid composition should also have an influence on those cellular properties. The wealth of data on the non-annular lipid binding sites in potassium channel from Streptomyces lividans (KcsA) makes this protein a good model to study the modulation of ion channel structure and function by lipids. The fact that this protein is able to assemble into clusters through the same non-annular sites, resulting in large changes in channel activity, makes these sites even more interesting as a potential target to develop lead compounds able to disrupt such interactions and hopefully, to modulate ion channel function. This Article is Part of a Special Issue Entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.  相似文献   
105.
E1 and E2 are two hepatitis C viral envelope glycoproteins that assemble into a heterodimer that is essential for membrane fusion and penetration into the target cell. Both extracellular and transmembrane (TM) glycoprotein domains contribute to this interaction, but study of TM–TM interactions has been limited because synthesis and structural characterization of these highly hydrophobic segments present significant challenges. In this NMR study, by successful expression and purification of the E2 transmembrane domain as a fusion construct we have determined the global fold and characterized backbone motions for this peptide incorporated in phospholipid micelles. Backbone resonance frequencies, relaxation rates and solvent exposure measurements concur in showing this domain to adopt a helical conformation, with two helical segments spanning residues 717–726 and 732–746 connected by an unstructured linker containing the charged residues D728 and R730 involved in E1 binding. Although this linker exhibits increased local motions on the ps timescale, the dominating contribution to its relaxation is the global tumbling motion with an estimated correlation time of 12.3 ns. The positioning of the helix–linker–helix architecture within the mixed micelle was established by paramagnetic NMR spectroscopy and phospholipid-peptide cross relaxation measurements. These indicate that while the helices traverse the hydrophobic interior of the micelle, the linker lies closer to the micelle perimeter to accommodate its charged residues. These results lay the groundwork for structure determination of the E1/E2 complex and a molecular understanding of glycoprotein heterodimerization.  相似文献   
106.
The development of a high performance protein probe for the measurement of membrane potential will allow elucidation of spatiotemporal regulation of electrical signals within a network of excitable cells. Engineering such a probe requires a functional screen of many candidates. Although the glass-microelectrode technique generally provides an accurate measure of a given test probe, throughputs are limited. In this study, we focused on an approach that uses the membrane potential changes induced by an external electric field in a geometrically simple mammalian cell. For quantitative evaluation of membrane voltage probes that rely on the structural transition of the S1–S4 voltage sensor domain and hence have non-linear voltage dependencies, it was crucial to introduce exogenous inwardly rectifying potassium conductance to reduce cell-to-cell variability in resting membrane potentials. Importantly, the addition of the exogenous conductance drastically altered the profile of the field-induced potential. Following a site-directed random mutagenesis and the rapid screen, we identified a mutant of a voltage probe Mermaid, exhibiting positively shifted voltage sensitivity. Due to its simplicity, the current approach will be applicable under a microfluidic configuration to carry out an efficient screen. Additionally, we demonstrate another interesting aspect of the field-induced optical signals, ability to visualize electrical couplings between cells.  相似文献   
107.
The conformational dynamics of the histidine ABC transporter HisQMP2 from Salmonella enterica serovar Typhimurium, reconstituted into liposomes, is studied by site-directed spin labeling and double electron–electron resonance spectroscopy in the absence of nucleotides, in the ATP-bound, and in the post-hydrolysis state. The results show that the inter-dimer distances as measured between the Q-loops of HisP2 in the intact transporter resemble those determined for the maltose transporter in all three states of the hydrolysis cycle. Only in the presence of liganded HisJ the closed conformation of the nucleotide binding sites is achieved revealing the transmembrane communication of the presence of substrate. Two conformational states can be distinguished for the periplasmic moiety of HisQMP2 as detected by differences in distributions of interspin distances between positions 86 and 96 or 104 and 197. The observed conformational changes are correlated to proposed open, semi-open and closed conformations of the nucleotide binding domains HisP2. Our results are in line with a rearrangement of transmembrane helices 4 and 4′ of HisQM during the closed to the semi-open transition of HisP2 driven by the reorientation of the coupled helices 3a and 3b to occur upon hydrolysis.  相似文献   
108.
In bacteria, membrane transporters of the cation diffusion facilitator (CDF) family participate in Zn2 +, Fe2 +, Mn2 +, Co2 + and Ni2 + homeostasis. The functional role during infection processes for several members has been shown to be linked to the specificity of transport. Sinorhizobium meliloti has two homologous CDF genes with unknown transport specificity. Here we evaluate the role played by the CDF SMc02724 (SmYiiP). The deletion mutant strain of SmYiiP (ΔsmyiiP) showed reduced in vitro growth fitness only in the presence of Mn2 +. Incubation of ΔsmyiiP and WT cells with sub-lethal Mn2 + concentrations resulted in a 2-fold increase of the metal only in the mutant strain. Normal levels of resistance to Mn2 + were attained by complementation with the gene SMc02724 under regulation of its endogenous promoter. In vitro, liposomes with incorporated heterologously expressed pure protein accumulated several transition metals. However, only the transport rate of Mn2 + was increased by imposing a transmembrane H+ gradient. Nodulation assays in alfalfa plants showed that the strain ΔsmyiiP induced a lower number of nodules than in plants infected with the WT strain. Our results indicate that Mn2 + homeostasis in S. meliloti is required for full infection capacity, or nodule function, and that the specificity of transport in vivo of SmYiiP is narrowed down to Mn2 + by a mechanism involving the proton motive force.  相似文献   
109.
Hepatitis C virus (HCV) affects 2–3% of the global population. Approximately one-quarter of acute infections cause chronic hepatitis that leads to liver cirrhosis or hepatocellular carcinoma. The major obstacle of current research is the extremely narrow host tropism of HCV. A single HCV strain can replicate in the Huh7 human hepatoma cell line. Huh7 cells can be adapted under selective pressure in vitro to identify host factors that influence viral replication. Here, we extended this strategy to the in vivo condition and generated a series of cell lines by multiple rounds of adaptation in immunocompromised mice. Adaptation increased the cellular resistance to HCV infection. Microarray analyses revealed that the expression levels of several genes were associated with HCV resistance. Notably, up-regulation of the mRNA encoding cysteine-rich secretory protein 3 (CRISP3), a glycoprotein with unknown function that is secreted from multiple exocrine glands, was correlated with HCV resistance. The presence of CRISP3 in the culture medium limited HCV replication at the early phase of infection.  相似文献   
110.
Amyotrophic Lateral Sclerosis is a motor neurodegenerative disease which is characterized by progressive loss of motor neurons followed by paralysis and eventually death. In human, VAMP-associated protein B (VAPB) is the causative gene of the familial form of ALS8. Previous studies have shown that P56S and T46I point mutations of hVAPB are present in this form of ALS. Recently, another mutation, V234I of hVAPB was found in one familial case of ALS. This is the first study where we have shown that V234I-VAPB does not form aggregate like other two mutants of VAPB and localizes differently than the wild type VAPB. It induces Ubiquitin aggregation followed by cell death. We propose that V234I-VAPB exhibits the characteristics of ALS in spite of not having the typical aggregation property of different mutations in various neurodegenerative diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号