首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5328篇
  免费   360篇
  国内免费   488篇
  2024年   24篇
  2023年   124篇
  2022年   172篇
  2021年   251篇
  2020年   207篇
  2019年   323篇
  2018年   241篇
  2017年   169篇
  2016年   170篇
  2015年   213篇
  2014年   386篇
  2013年   553篇
  2012年   287篇
  2011年   351篇
  2010年   192篇
  2009年   200篇
  2008年   225篇
  2007年   228篇
  2006年   192篇
  2005年   199篇
  2004年   147篇
  2003年   137篇
  2002年   149篇
  2001年   113篇
  2000年   83篇
  1999年   77篇
  1998年   65篇
  1997年   64篇
  1996年   54篇
  1995年   48篇
  1994年   60篇
  1993年   55篇
  1992年   46篇
  1991年   60篇
  1990年   22篇
  1989年   34篇
  1988年   18篇
  1987年   32篇
  1986年   15篇
  1985年   21篇
  1984年   26篇
  1983年   26篇
  1982年   25篇
  1981年   23篇
  1980年   15篇
  1979年   23篇
  1978年   9篇
  1977年   5篇
  1976年   8篇
  1975年   5篇
排序方式: 共有6176条查询结果,搜索用时 31 毫秒
91.
A new method is described for the purification of the intermediate filament protein vimentin from Ehrlich ascites tumor cells using single-stranded DNA-cellulose affinity chromatography. The procedure is rapid and allows the large scale isolation of the protein. Partial characterization of vimentin shows that it has a molecular weight of 58000 and an apparent pI of 5.3. It can be degraded by the vimentin-specific, Ca2+-activated proteinase which results in the production of a characteristic set of degradation products. The vimentin also cross-reacts with the intermediate filament protein monoclonal antibody, α-IFA.  相似文献   
92.
Summary A cell culture system is described for the growth of rat tracheal epithelial (RTE) cells at clonal density. The system uses normal, early passage RTE cells grown on feeder layers of lethally irradiated 3T3 cells. The RTE cells have a high colony forming efficiency (5 to 10%) in culture, can be passaged up to 5 times, and are capable of more than 20 cumulative doublings per colony forming cell. The epithelial nature of the cells was confirmed by cell and colony morphology, immunoperoxidase staining of intracellular keratin, and cellular ultrastructural studies. The cytotoxic response of RTE cells to a variety of carcinogens, including a direct acting chemical carcinogen, a physical carcinogen, and a series of polycyclic aromatic hydrocarbons, was quantitated. A linear decrease in the logarithm of survival was observed with increasing doses ofN-methyl-N′-nitro-N-nitrosoguanidine (MNNG), γ-irradiation, 7,12-dimethylbenz(a)anthracene, and a diol-epoxide of benzo(a)pyrene. No toxicity was observed after treatment with benzo(a)pyrene or 3-methylcholanthrene over the concentration range examined. In contrast, phorbol ester tumor promoters stimulated cell growth markedly. Based on these and other studies, the RTE cell culture system represents a model system that will be useful for quantitative studies of epithelial cell growth, differentiation, and carcinogenesis.  相似文献   
93.
转移及非转移肿瘤移植后615小鼠血液流变学变化的研究   总被引:1,自引:0,他引:1  
血道高转移瘤株FC、淋巴合并血道高转移瘤株U14、淋巴道高转移瘤株H22、非转移瘤株P615分别接种于336只纯系近交615小鼠.不同时间取血并处死动物,进行组织学及血液流变学检查.将转移瘤发展过程分为潜伏期、侵袭期、转移早、中、晚期,非转移瘤发展过程分为潜优期、增殖期、囊腔形成期及中心坏死期.本实验结果显示,不同转移能力及途径肿瘤发展的不同时期血液流变学变化规律不同,因而表明肿瘤侵袭、转移与血液流变学变化之间存在互为因果的紧密关系.其临床诊断及治疗意义被讨论.  相似文献   
94.
Studies that examine the shear- and abrasion-sensitivity of proliferating cells are important in order to understand the behavior of hybridoma cells in bioreactor culture and metastasizing cancer cells in the bloodstream. Little is known about the link between morphology, structure, and mechanical properties of a given cell line, especially with respect to variations throughout the cell cycle. In our experiments with GAP A3 hybridoma cells, distinct cell morphologies were identified and correlated with phases of the cell cycle by video microscopic observation of synchronized cells, and of individual cells that were followed throughout their cell cycle. Micropipet manipulation was used to measure the geometrical (cell volume) and mechanical (apparent cell viscosity) properties of single cells. As the cell cycle progressed at 37°C, an increase in cell volume from 1400 μm3 to 5700 μm3 was accompanied by an increase in apparent cell viscosity from 430 poise to 12,000 poise, consistent with an accumulation of more cytoplasmic material in the “older” cells. Hybridomas are representative of the various leukemias derived from hemopoietic cells, and even though as a whole, they appeared to be rather shear-insensitive, the wide range of property values demonstrates that a given cell line cannot be characterized by a single value for any one property, and that properties must be related to the cell cycle when considering proliferating cells. It is interesting to see if distinct stages in the metastatic sequence of events might correlate with any of these physical features of the cell cycle, irrespective of cell type or cell line. For example, the cytokinetic doublet could represent a fragile structure that may fail and produce cell death under fluid-shear conditions that would not affect the cells at any other stage in the cell cycle. Identifying such cell cycle-dependent features in metastasizing cancer cells could lead to a better understanding of the metastatic process and to possible clinical treatments directed at making cells more shear- and abrasion-sensitive, and therefore, more likely to be killed by the natural hydrodynamic forces of the circulatory system.  相似文献   
95.
Summary Although an outwardly rectifying K+ conductance (I K, A) is prominently expressed in human alveolar macrophages, the expression of this conductance in human monocyte-derived macrophages (HMDMs) is rare. We have analyzed the induction of the expression of I K, A in voltage-clamped, in vitro differentiated HMDMs by a number of stimuli which produce either priming or activation of macrophages. Cultures were stimulated with lipopolysaccharide (LPS, 2 g/ml), interleukin 2 (IL-2, 100 U/ml), or combinations of LPS and either recombinant interferon-gamma (-IFN, 10 U/ml), phorbol myristate acetate (PMA, 0.01 or 1 g/ ml) and platelet activating factor (PAF, 20 ng/ml) for periods of up to 24 hr. Treatment of the cells with either LPS or IL-2 greatly enhanced the frequency of current expression. Treatment with either PMA or -IFN alone did not induce current expression; treatment of the cells with a combination of LPS and either PMA, -IFN, or PAF did not enhance current expression over that observed with LPS alone. The expression of the outwardly rectifying K+ current was observed in 36% (n=321) of the cells for cultures treated with LPS and 33% (n=55) of the cells for cultures treated with IL-2. The inactivating outward K+ current was absent in cells which were not treated with either LPS or IL-2. The kinetics of current activation and inactivation appeared identical to that previously described for the transient-inactivating outward current of the human alveolar macrophage. Cycloheximide (1 g/ml), an inhibitor of protein synthesis, completely suppressed LPS-induced current expression. No correlation was found between peak current amplitude and cell size in LPS-activated cells expressing the outwardly rectifying K+ current, indicating that current density was not held constant from cell to cell. The coupling of ion channel expression and secretion in individual HMDMs was studied using the reverse hemolytic plaque assay. Although an enhancement of K + current expression was observed following either LPS or IL-2 treatment, a quantitatively similar and uniform increase in the percentage of either IL-1 or lysozyme-secreting cells was not observed. The frequency of current expression in cells identified as secreting tumor necrosis factor- (TNF-), interleukin 1 (IL-1), or lysozyme was the same or decreased over that observed for nonsecreting cells. Thus, LPS treatment increases the number of K+ channels on HMDM membranes; however, K+ channel expression alone was not sufficient to give rise to enhanced secretion in LPS-activated macrophages. Enhanced K+ channel expression appears to be a part of the primary activation signal. K+-channel activation would hyperpolarize the membrane potential, potentially providing the driving force for calcium entry through voltage-independent pathways activated by the subsequent binding of soluble substances to membrane surface receptors, the secondary signal linked to secretion.This work was supported by NIH grant RO 1 GM36823.  相似文献   
96.
Hexokinase plays an important role in normal glucose-utilizing tissues like brain and kidney, and an even more important role in highly malignant cancer cells where it is markedly overexpressed. In both cell types, normal and transformed, a significant portion of the total hexokinase activity is bound to particulate material that sediments upon differential centrifugation with the crude mitochondrial fraction. In the case of brain, particulate binding may constitute most of the total hexokinase activity of the cell, and in highly malignant tumor cells as much as 80 percent of the total. When a variety of techniques are rigorously applied to better define the particulate location of hexokinase within the crude mitochondrial fraction, a striking difference is observed between the distribution of hexokinase in normal and transformed cells. Significantly, particulate hexokinase found in rat brain, kidney, or liver consistently distributes with nonmitochondrial membrane markers whereas the particulate hexokinase of highly glycolytic hepatoma cells distributes with outer mitochondrial membrane markers. These studies indicate that within normal tissues hexokinase binds preferentially to non-mitochondrial receptor sites but upon transformation of such cells to yield poorly differentiated, highly malignant tumors, the overexpressed enzyme binds preferentially to outer mitochondrial membrane receptors. These studies, taken together with the well-known observation that, once solubilized, the particulate hexokinase from a normal tissue can bind to isolated mitochondria, are consistent with the presence in normal tissues of at least two different types of particulate receptors for hexokinase with different subcellular locations. A model which explains this unique transformation-dependent shift in the intracellular location of hexokinase is proposed.  相似文献   
97.
98.
Foci, nodules of cellular overgrowth, that appear after confluence are an in vitro characteristic of malignant transformation. A well-studied in vitro model of estrogen-dependent tumors is the MCF-7 cell line, derived from a pleural metastasis of a human breast adenocarcinoma. We report that cultivation of MCF-7 cells, using routine methods, results in extensive estrogen-stimulated postconfluent cell accumulation characterized by discrete three-dimensional arrays. Side view Nomarski optical sections revealed these to be principally multicellular foci with occasional domes and pseudoacinar vacuoles. This effect on MCF-7 cell growth occurs in media containing fetal bovine serum but not with calf serum or charcoal-dextran-treated fetal bovine serum unless supplemented with estrogens. Foci formation starts 5-6 days after confluence, and the number of foci generated is a function of the concentration of added estrogens. Foci formation is suppressed by the antiestrogens Tamoxifen and LY 156758. Addition of progesterone, testosterone, or dexamethasone had little or no effect, while various estrogens (ethinyl estradiol, diethylstilbestrol, and moxestrol) induced foci development. Clones derived from single cells of the initial MCF-7 population revealed a wide variance in estrogen-induced foci formation, demonstrating heterogeneity of this tumor cell line. The postconfluent cell growth of the estrogen receptor-deficient cell line, MDA-MB-231, contrasted with MCF-7 by developing an extensive multilayer morphology devoid of discrete structures. The tumorigenic potential of the MCF-7 cells used in our experiments was confirmed by their estrogen-dependent growth in immunosuppressed male BDF1 mice. These data suggest an estrogen receptor-based mechanism for the development of multicellular foci during postconfluent growth of MCF-7 cells. After confluence, foci, in contrast to the quiescent surrounding monolayer, retain proliferating cells. Focus formation, therefore, reflects the heterogeneous responsiveness of these cells to estrogens and should provide a model permitting in vitro comparisons between the progenitor cells of multicellular foci and the monolayer population.  相似文献   
99.
Normal cells, with few exceptions, cannot proliferate indefinitely. Cell populations--in vivo and in culture--generally undergo only a limited number of doublings before proliferation invariably and irreversibly ceases. This process has been termed the finite lifespan phenotype or cellular senescence. There is long-standing, albeit indirect, evidence that cellular senescence plays an important role in complex biological processes as diverse as normal growth control, differentiation, development, aging, and tumorigenesis. In recent years, it has been possible to develop a molecular framework for understanding some of the fundamental features of cellular senescence. This framework derives primarily from the physiology, genetics, and molecular biology of cells undergoing senescence in culture. Our understanding of senescence, and the mechanisms that control it, is still in its infancy. Nonetheless, recent data raise some intriguing possibilities regarding potential molecular bases for the links between senescence in culture and normal and abnormal growth control, differentiation, and aging.  相似文献   
100.
We have previously demonstrated that the exposure of mouse microvascular endothelium (MME) to tumor necrosis factor-alpha (TNF) led to the increased binding of mouse mastocytoma cells (P815) to endothelial monolayers (Bereta et al., in press). In the current study we examined the possible involvement of protein kinases in TNF signal transduction in the endothelial cells. PKA does not appear to play a role in the potentiation of binding by TNF. We found that the TNF-generated signal is inhibited by H-7 and sangivamycin, but not by staurosporine. TNF did not cause translocation of PKC to the cell membrane and its effect could not be completely mimicked by PMA nor by PMA in the presence of calcium-raising agents. Thus, we concluded that the "classical" PKC pathway is not completely responsible for TNF signalling in this system. We also found that staurosporine itself strongly enhanced adhesion of tumor cells to endothelium, utilizing a mechanism distinct from that of TNF. Although the data provide evidence for the role of kinases in the effect of TNF on binding of tumor cells to MME, this role appears to be a complex one.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号