首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1258篇
  免费   157篇
  国内免费   117篇
  2024年   6篇
  2023年   32篇
  2022年   36篇
  2021年   63篇
  2020年   45篇
  2019年   70篇
  2018年   64篇
  2017年   50篇
  2016年   51篇
  2015年   67篇
  2014年   86篇
  2013年   102篇
  2012年   76篇
  2011年   60篇
  2010年   53篇
  2009年   62篇
  2008年   82篇
  2007年   73篇
  2006年   57篇
  2005年   48篇
  2004年   37篇
  2003年   47篇
  2002年   38篇
  2001年   18篇
  2000年   15篇
  1999年   18篇
  1998年   17篇
  1997年   18篇
  1996年   21篇
  1995年   10篇
  1994年   20篇
  1993年   16篇
  1992年   6篇
  1991年   7篇
  1990年   6篇
  1989年   10篇
  1988年   5篇
  1987年   5篇
  1986年   4篇
  1985年   8篇
  1984年   7篇
  1983年   3篇
  1982年   6篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有1532条查询结果,搜索用时 15 毫秒
81.
The mechanism of development of mouse fertilized eggs from the one-cell stage to the two-cell stage remains unclear to date. In the present study, we have evaluated protein kinase C (PKC) and M-phase promoting factor (MPF) kinase activity in fertilized mouse eggs treated with a PKC modulator. PKC and MPF activity have similar activity. The two subunits of MPF, p34(cdc2) and cyclin B, were shown to be included in the substrates phosphorylated by PKC in fertilized mouse eggs, while PKC modulator affected the electrophoretic mobility shift of cdc2 and cdc25C by dephosphorylation and phosphorylation. These results clearly indicate that PKC may affect the progression of the cell cycle through post-translational modification of MPF activity.  相似文献   
82.
83.
Lepsík M  Kríz Z  Havlas Z 《Proteins》2004,57(2):279-293
A subnanomolar inhibitor of human immunodeficiency virus type 1 (HIV-1) protease, designated QF34, potently inhibits the wild-type and drug-resistant enzyme. To explain its broad activity, the binding of QF34 to the wild-type HIV-1 protease is investigated by molecular dynamics simulations and compared to the binding of two inhibitors that are used clinically, saquinavir (SQV) and indinavir (IDV). Analysis of the flexibility of protease residues and inhibitor segments in the complex reveals that segments of QF34 were more mobile during the dynamics studies than the segments of SQV and IDV. The dynamics of hydrogen bonding show that QF34 forms a larger number of stable hydrogen bonds than the two inhibitors that are used clinically. Absolute binding free energies were calculated with molecular mechanics-generalized Born surface area (MM-GBSA) methodology using three protocols. The most consistent results were obtained using the single-trajectory approach, due to cancellation of errors and inadequate sampling in the separate-trajectory protocols. For all three inhibitors, energy components in favor of binding include van der Waals and electrostatic terms, whereas polar solvation and entropy terms oppose binding. Decomposition of binding energies reveals that more protease residues contribute significantly to the binding of QF34 than to the binding of SQV and IDV. Moreover, contributions from protease main chains and side chains are balanced in the case of QF34 (52:48 ratio, respectively), whereas side chain contributions prevail in both SQV and IDV (main-chain:side-chain ratios of 41:59 and 45:55, respectively). The presented results help explain the ability of QF34 to inhibit multiple resistant mutants and should be considered in the design of broad-specificity second-generation HIV-1 protease inhibitors.  相似文献   
84.
85.
Fluorescence correlation spectroscopy was used to measure the diffusion behavior of a mixture of DMPC or DMPC/DMPG liposomes with human serum albumin (HSA) and mesoporphyrin (MP), which was used as the fluorescent label for liposomes and HSA as well. For decomposing the fluorescence intensity autocorrelation function (ACF) into components corresponding to a liposome population, HSA and MP, we used a maximum entropy procedure that computes a distribution of diffusion times consistent with the ACF data. We found that a simple parametric non-linear fit with a discrete set of decay components did not converge to a stable parameter set. The distribution calculated with the maximum entropy method was stable and the average size of the particles calculated from the effective diffusion time was in good agreement with the data determined using the discrete-component fit.  相似文献   
86.
Ionizable groups play critical roles in biological processes. Computation of pK(a)s is complicated by model approximations and multiple conformations. Calculated and experimental pK(a)s are compared for relatively inflexible active-site side chains, to develop an empirical model for hydration entropy changes upon charge burial. The modification is found to be generally small, but large for cysteine, consistent with small molecule ionization data and with partial charge distributions in ionized and neutral forms. The hydration model predicts significant entropic contributions for ionizable residue burial, demonstrated for components in the pyruvate dehydrogenase complex. Conformational relaxation in a pH-titration is estimated with a mean-field assessment of maximal side chain solvent accessibility. All ionizable residues interact within a low protein dielectric finite difference (FD) scheme, and more flexible groups also access water-mediated Debye-Hückel (DH) interactions. The DH method tends to match overall pH-dependent stability, while FD can be more accurate for active-site groups. Tolerance for side chain rotamer packing is varied, defining access to DH interactions, and the best fit with experimental pK(a)s obtained. The new (FD/DH) method provides a fast computational framework for making the distinction between buried and solvent-accessible groups that has been qualitatively apparent from previous work, and pK(a) calculations are significantly improved for a mixed set of ionizable residues. Its effectiveness is also demonstrated with computation of the pH-dependence of electrostatic energy, recovering favorable contributions to folded state stability and, in relation to structural genomics, with substantial improvement (reduction of false positives) in active-site identification by electrostatic strain.  相似文献   
87.
Thrombin binds thrombomodulin (TM) at anion binding exosite 1, an allosteric site far from the thrombin active site. A monoclonal antibody (mAb) has been isolated that competes with TM for binding to thrombin. Complete binding kinetic and thermodynamic profiles for these two protein-protein interactions have been generated. Binding kinetics were measured by Biacore. Although both interactions have similar K(D)s, TM binding is rapid and reversible while binding of the mAb is slow and nearly irreversible. The enthalpic contribution to the DeltaG(bind) was measured by isothermal titration calorimetry and van't Hoff analysis. The contribution to the DeltaG(bind) from electrostatic steering was assessed from the dependence of the k(a) on ionic strength. Release of solvent H(2)O molecules from the interface was assessed by monitoring the decrease in amide solvent accessibility at the interface upon protein-protein binding. The mAb binding is enthalpy driven and has a slow k(d). TM binding appears to be entropy driven and has a fast k(a). The favorable entropy of the thrombin-TM interaction seems to be derived from electrostatic steering and a contribution from solvent release. The two interactions have remarkably different thermodynamic driving forces for competing reactions. The possibility that optimization of binding kinetics for a particular function may be reflected in different thermodynamic driving forces is discussed.  相似文献   
88.
We present a solvable model that predicts the folding kinetics of two-state proteins from their native structures. The model is based on conditional chain entropies. It assumes that folding processes are dominated by small-loop closure events that can be inferred from native structures. For CI2, the src SH3 domain, TNfn3, and protein L, the model reproduces two-state kinetics, and it predicts well the average Phi-values for secondary structures. The barrier to folding is the formation of predominantly local structures such as helices and hairpins, which are needed to bring nonlocal pairs of amino acids into contact.  相似文献   
89.
Polyproline II (PPII) is reported to be a dominant conformation in the unfolded state of peptides, even when no prolines are present in the sequence. Here we use isothermal titration calorimetry (ITC) to investigate the PPII bias in the unfolded state by studying the binding of the SH3 domain of SEM-5 to variants of its putative PPII peptide ligand, Sos. The experimental system is unique in that it provides direct access to the conformational entropy change of the substituted amino acids. Results indicate that the denatured ensemble can be characterized by at least two thermodynamically distinct states, the PPII conformation and an unfolded state conforming to the previously held idea of the denatured state as a random collection of conformations determined largely by hard-sphere collision. The probability of the PPII conformation in the denatured states for Ala and Gly were found to be significant, approximately 30% and approximately 10%, respectively, resulting in a dramatic reduction in the conformational entropy of folding.  相似文献   
90.
The goal of this work is to characterize structurally ambivalent fragments in proteins. We have searched the Protein Data Bank and identified all structurally ambivalent peptides (SAPs) of length five or greater that exist in two different backbone conformations. The SAPs were classified in five distinct categories based on their structure. We propose a novel index that provides a quantitative measure of conformational variability of a sequence fragment. It measures the context-dependent width of the distribution of (phi,xi) dihedral angles associated with each amino acid type. This index was used to analyze the local structural propensity of both SAPs and the sequence fragments contiguous to them. We also analyzed type-specific amino acid composition, solvent accessibility, and overall structural properties of SAPs and their sequence context. We show that each type of SAP has an unusual, type-specific amino acid composition and, as a result, simultaneous intrinsic preferences for two distinct types of backbone conformation. All types of SAPs have lower sequence complexity than average. Fragments that adopt helical conformation in one protein and sheet conformation in another have the lowest sequence complexity and are sampled from a relatively limited repertoire of possible residue combinations. A statistically significant difference between two distinct conformations of the same SAP is observed not only in the overall structural properties of proteins harboring the SAP but also in the properties of its flanking regions and in the pattern of solvent accessibility. These results have implications for protein design and structure prediction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号