首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1258篇
  免费   157篇
  国内免费   117篇
  2024年   6篇
  2023年   32篇
  2022年   36篇
  2021年   63篇
  2020年   45篇
  2019年   70篇
  2018年   64篇
  2017年   50篇
  2016年   51篇
  2015年   67篇
  2014年   86篇
  2013年   102篇
  2012年   76篇
  2011年   60篇
  2010年   53篇
  2009年   62篇
  2008年   82篇
  2007年   73篇
  2006年   57篇
  2005年   48篇
  2004年   37篇
  2003年   47篇
  2002年   38篇
  2001年   18篇
  2000年   15篇
  1999年   18篇
  1998年   17篇
  1997年   18篇
  1996年   21篇
  1995年   10篇
  1994年   20篇
  1993年   16篇
  1992年   6篇
  1991年   7篇
  1990年   6篇
  1989年   10篇
  1988年   5篇
  1987年   5篇
  1986年   4篇
  1985年   8篇
  1984年   7篇
  1983年   3篇
  1982年   6篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有1532条查询结果,搜索用时 218 毫秒
121.
Eukaryotic initiation factor 3a (eIF3a) has been suggested to play a regulatory role in mRNA translation. Decreased eIF3a expression has been observed in differentiated cells while higher levels have been observed in cancer cells. However, whether eIF3a plays any role in differentiation and development is currently unknown. Here, we investigated eIF3a expression during mouse development and its role in differentiation of colon epithelial cells. We found that eIF3a expression was higher in fetal tissues compared with postnatal ones. Its expression in intestine, stomach, and lung abruptly stopped on the 18th day in gestation but persisted in liver, kidney, and heart throughout the postnatal stage at decreased levels. Similarly, eIF3a expression in colon cancer cell lines, HT-29 and Caco-2, drastically decreased prior to differentiation. Enforced eIF3a expression inhibited while knocking it down using small interference RNA promoted Caco-2 differentiation. Thus, eIF3a may play some roles in development and differentiation and that the decreased eIF3a expression may be a pre-requisite of intestinal epithelial cell differentiation.  相似文献   
122.
The conformational behavior of receptor-bound acetylcholine (ACh) was investigated by molecular dynamics simulations. Based on the great similarity among muscarinic receptors, the study was focused on the human M(1), M(2), and M(5) receptors as previously modeled by us. The results showed that receptor-bound ACh was not frozen in a single preferred conformation but preserved an unexpected fraction of its conformational space. However, there were marked differences between the three receptors since the ligand was mostly trans in the M(1) receptor, equally distributed among trans and gauche conformers in M(2), and exclusively gauche in the M(5); the greater flexibility of M(2)-bound ACh was paralleled by the greater flexibility of the occupied M(2) binding site. By contrast, the property space of receptor-bound ACh, and particularly its virtual (computed, conformation-dependent) lipophilicity, was restricted to relatively narrow ranges optimal for successful interaction. Experimental binding investigations to the individual human M(1), M(2), and M(5) muscarinic receptors showed ACh to have a 10-fold higher affinity for the M(2) compared to the M(1) and M(5) receptors. This selectivity was not confirmed by the calculated binding scores, a fact postulated to be caused by the absence of an entropy component in such binding scores. Indeed, the Shannon entropy of all geometric and physicochemical properties monitored were markedly higher in M(2)-bound ACh compared to M(1)-bound and M(5)-bound ACh. This finding suggests that the selectivity profile of acetylcholine for the M(2) receptor is largely entropy-driven, a fact that might explain the intrinsic difficulty to design subtype-selective muscarinic agonists.  相似文献   
123.
Growing well-diffracting crystals constitutes a serious bottleneck in structural biology. A recently proposed crystallization methodology for "stubborn crystallizers" is to engineer surface sequence variants designed to form intermolecular contacts that could support a crystal lattice. This approach relies on the concept of surface entropy reduction (SER), i.e., the replacement of clusters of flexible, solvent-exposed residues with residues with lower conformational entropy. This strategy minimizes the loss of conformational entropy upon crystallization and renders crystallization thermodynamically favorable. The method has been successfully used to crystallize more than 15 novel proteins, all stubborn crystallizers. But the choice of suitable sites for mutagenesis is not trivial. Herein, we announce a Web server, the surface entropy reduction prediction server (SERp server), designed to identify mutations that may facilitate crystallization. Suggested mutations are predicted based on an algorithm incorporating a conformational entropy profile, a secondary structure prediction, and sequence conservation. Minor considerations include the nature of flanking residues and gaps between mutation candidates. While designed to be used with default values, the server has many user-controlled parameters allowing for considerable flexibility. Within, we discuss (1) the methodology of the server, (2) how to interpret the results, and (3) factors that must be considered when selecting mutations. We also attempt to benchmark the server by comparing the server's predictions with successful SER structures. In most cases, the structure yielding mutations were easily identified by the SERp server. The server can be accessed at http://www.doe-mbi.ucla.edu/Services/SER.  相似文献   
124.
The Arabidopsis thaliana lysyl tRNA synthetase (AtKRS) structurally and functionally resembles the well-characterized prokaryotic class IIb KRS, including the propensity to aminoacylate tRNA(Lys) with suboptimal identity elements, as well as non-cognate tRNAs. Transient expression of AtKRS in carrot cells promotes aminoacylation of such tRNAs in vivo and translational recoding of lysine at nonsense codons. Stable expression of AtKRS in Zea mays causes translational recoding of lysine into zeins, significantly enriching the lysine content of grain.  相似文献   
125.
Previously, we demonstrated that treatment of monocytic cells with IFN-gamma causes release of ribosomal protein L13a from the 60S ribosome and subsequent translational silencing of Ceruloplasmin (Cp) mRNA. Here, evidence using cultured cells demonstrates that Cp mRNA silencing is dependent on L13a and that L13a-deficient ribosomes are competent for global translational activity. Human monocytic U937 cells were stably transfected with two different shRNA sequences for L13a and clonally selected for more than 98% abrogation of total L13a expression. Metabolic labeling of these cells showed rescue of Cp translation from the IFN-gamma mediated translational silencing activity. Depletion of L13a caused significant reduction of methylation of ribosomal RNA and of cap-independent translation mediated by Internal Ribosome Entry Site (IRES) elements derived from p27, p53, and SNAT2 mRNAs. However, no significant differences in the ribosomal RNA processing, polysome formation, global translational activity, translational fidelity, and cell proliferation were observed between L13a-deficient and wild-type control cells. These results support the notion that ribosome can serve as a depot for releasable translation-regulatory factors unrelated to its basal polypeptide synthetic function. Unlike mammalian cells, the L13a homolog in yeast is indispensable for growth. Thus, L13a may have evolved from an essential ribosomal protein in lower eukaryotes to having a role as a dispensable extra-ribosomal function in higher eukaryotes.  相似文献   
126.
We investigated the physical association of the DNA topoisomerase IIbeta binding protein 1 (TopBP1), involved in DNA replication and repair but also in regulation of apoptosis, with poly(ADP-ribose) polymerase-1 (PARP-1). This enzyme plays a crucial role in DNA repair and interacts with many DNA replication/repair factors. It was shown that the sixth BRCA1 C-terminal (BRCT) domain of TopBP1 interacts with a protein fragment of PARP-1 in vitro containing the DNA-binding and the automodification domains. More significantly, the in vivo interaction of endogenous TopBP1 and PARP-1 proteins could be shown in HeLa-S3 cells by co-immunoprecipitation. TopBP1 and PARP-1 are localized within overlapping regions in the nucleus of HeLa-S3 cells as shown by immunofluorescence. Exposure to UVB light slightly enhanced the interaction between both proteins. Furthermore, TopBP1 was detected in nuclear regions where poly(ADP-ribose) (PAR) synthesis takes place and is ADP-ribosylated by PARP-1. Finally, cellular (ADP-ribosyl)ating activity impairs binding of TopBP1 to Myc-interacting zinc finger protein-1 (Miz-1). The results indicate an influence of post-translational modifications of TopBP1 on its function during DNA repair.  相似文献   
127.
128.
129.
A number of fundamental technical developments like the evolvement of oligonucleotide microarrays, new sequencing technologies and gene synthesis have considerably changed the character of genomic biological resource centres in recent years. While genomic biological resource centres traditionally served mainly as providers of sparsely characterized cDNA clones and clone sets, there is nowadays a clear tendency towards well-characterized, high-quality clones. In addition, major new service units like microarray services have developed, which are completely independent of clone collections, reflecting the co-evolution of data generation and technology development. The new technologies require an increasingly higher degree of specialization, data integration and quality standards. Altogether, these developments result in spin-offs of highly specialized biotech companies, some of which will take a prominent position in translational medicine.  相似文献   
130.
Internal ribosomal entry sites (IRESs) are structured cis‐acting RNAs that drive an alternative, cap‐independent translation initiation pathway. They are used by many viruses to hijack the translational machinery of the host cell. IRESs facilitate translation initiation by recruiting and actively manipulating the eukaryotic ribosome using only a subset of canonical initiation factor and IRES transacting factors. Here we present cryo‐EM reconstructions of the ribosome 80S‐ and 40S‐bound Hepatitis C Virus (HCV) IRES. The presence of four subpopulations for the 80S•HCV IRES complex reveals dynamic conformational modes of the complex. At a global resolution of 3.9 Å for the most stable complex, a derived atomic model reveals a complex fold of the IRES RNA and molecular details of its interaction with the ribosome. The comparison of obtained structures explains how a modular architecture facilitates mRNA loading and tRNA binding to the P‐site. This information provides the structural foundation for understanding the mechanism of HCV IRES RNA‐driven translation initiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号