首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   220篇
  免费   8篇
  国内免费   36篇
  2023年   5篇
  2022年   7篇
  2021年   5篇
  2020年   7篇
  2019年   8篇
  2018年   6篇
  2017年   4篇
  2016年   8篇
  2015年   7篇
  2014年   9篇
  2013年   14篇
  2012年   5篇
  2011年   11篇
  2010年   6篇
  2009年   11篇
  2008年   10篇
  2007年   15篇
  2006年   17篇
  2005年   11篇
  2004年   11篇
  2003年   9篇
  2002年   8篇
  2001年   13篇
  2000年   2篇
  1999年   8篇
  1998年   4篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   4篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1985年   6篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1978年   1篇
  1972年   1篇
排序方式: 共有264条查询结果,搜索用时 78 毫秒
101.
Mycorrhizas are ubiquitous plant–fungus mutualists in terrestrial ecosystems and play important roles in plant resource capture and nutrient cycling. Sporadic evidence suggests that anthropogenic nitrogen (N) input may impact the development and the functioning of arbuscular mycorrhizal (AM) fungi, potentially altering host plant growth and soil carbon (C) dynamics. In this study, we examined how mineral N inputs affected mycorrhizal mediation of plant N acquisition and residue decomposition in a microcosm system. Each microcosm unit was separated into HOST and TEST compartments by a replaceable mesh screen that either prevented or allowed AM fungal hyphae but not plant roots to grow into the TEST compartments. Wild oat (Avena fatua L.) was planted in the HOST compartments that had been inoculated with either a single species of AM fungus, Glomus etunicatum, or a mixture of AM fungi including G. etunicatum. Mycorrhizal contributions to plant N acquisition and residue decomposition were directly assessed by introducing a mineral 15N tracer and 13C‐rich residues of a C4 plant to the TEST compartments. Results from 15N tracer measurements showed that AM fungal hyphae directly transported N from the TEST soil to the host plant. Compared with the control with no penetration of AM fungal hyphae, AM hyphal penetration led to a 125% increase in biomass 15N of host plants and a 20% reduction in extractable inorganic N in the TEST soil. Mineral N inputs to the HOST compartments (equivalent to 5.0 g N m?2 yr?1) increased oat biomass and total root length colonized by mycorrhizal fungi by 189% and 285%, respectively, as compared with the no‐N control. Mineral N inputs to the HOST plants also reduced extractable inorganic N and particulate residue C proportion by 58% and 12%, respectively, in the corresponding TEST soils as compared to the no‐N control, by stimulating AM fungal growth and activities. The species mixture of mycorrhizal fungi was more effective in facilitating N transport and residue decomposition than the single AM species. These findings indicate that low‐level mineral N inputs may significantly enhance nutrient cycling and plant resource capture in terrestrial ecosystems via stimulation of root growth, mycorrhizal functioning, and residue decomposition. The long‐term effects of these observed alterations on soil C dynamics remain to be investigated.  相似文献   
102.
103.
A rapid (6.5 min) and simple one-step magnetic immunoassay (MIA) has been developed for analysis of human urinary albumin in near patient settings. Polyclonal rabbit anti-human albumin was used as a capture antibody and monoclonal mouse anti-human albumin as a detection antibody in a two-site immunometric assay requiring no additional washing procedures. The polyclonal anti-human albumin was conjugated to silica microparticles (solid phase) and the monoclonal antibody to dextran-coated nanoscaled superparamagnetic particles (tracer). Quantification of human albumin in undiluted urine was performed by adding 2 μL urine to a measuring vial containing solid-phase, superparamagnetic tracer and reaction buffer and then inverting the vial by hand for 20 s. The measuring vial was allowed to stand for 6 min prior to detection, in order for the solid-phase sediment to form at the bottom of the vial. Lastly, the measuring vial was placed into a magnetic permeability detector, which measured the enrichment of superparamagnetic tracer in the sediment due to complex formation with human albumin. Total analysis time was 6.5 min. A linear response was obtained for 0–400 mg/L albumin with a detection limit of 5 mg/L. The total coefficient of variation (CV) was 11% calculated from four consecutive runs on a urine sample containing 11.1 mg/L human albumin during 3 consecutive days. Human urinary albumin analysis was performed on 149 patient samples using the MIA technique and the obtained results showed good correlation with the hospital immunoturbidimetric reference method (y = 1.004x + 4.01, R2 = 0.978, N = 149) and a commercially available point of care albumin analysis provided by HemoCue Inc. (y = 0.98x + 5.8, R2 = 0.833, N = 90).  相似文献   
104.
Lipoprotein kinetic parameters are determined from mass spectrometry data after administering mass isotopes of amino acids, which label proteins endogenously. The standard procedure is to model the isotopic content of the labeled precursor amino acid and of proteins of interest as tracer-to-tracee ratio (TTR). It is shown here that even though the administered tracer alters amino acid mass and turnover, apolipoprotein synthesis is unaltered and hence the apolipoprotein system is in a steady state, with the total (labeled plus unlabeled) masses and fluxes remaining constant. The correct model formulation for apolipoprotein kinetics is shown to be in terms of tracer enrichment, not of TTR. The needed mathematical equations are derived. A theoretical error analysis is carried out to calculate the magnitude of error in published results using TTR modeling. It is shown that TTR modeling leads to a consistent underestimation of the fractional synthetic rate. In constant-infusion studies, the bias error percent is shown to equal approximately the plateau enrichment, generally <10%. It is shown that, in bolus studies, the underestimation error can be larger. Thus, for mass isotope studies with endogenous tracers, apolipoproteins are in a steady state and the data should be fitted by modeling enrichments.  相似文献   
105.
Repercussions of species loss on ecosystem processes depend on the effects of the lost species as well as the compensatory responses of the remaining species in the community. We experimentally removed two co-dominant plant species and added a 15N tracer in alpine tundra to compare how species’ functional differences influence community structure and N cycling. For both of the species, production compensated for the biomass removed by the second year. However, the responses of the remaining species depended on which species was removed. These differences in compensation influenced how species loss impacted ecosystem processes. After the removal of one of the co-dominant species, Acomastylis rossii, there were few changes in the relative abundance of the remaining species, and differences in functioning could be predicted based on effects associated with the removed species. In contrast, the removal of the other co-dominant, Deschampsia caespitosa, was associated with subsequent changes in community structure (species relative abundances and diversity) and impacts on ecosystem properties (microbial biomass N, dissolved organic N, and N uptake of subordinate species). Variation in compensation may contribute to the resulting effects on ecosystem functioning, with the potential to buffer or accelerate the effects of species loss.  相似文献   
106.
采用盆钵实验和^14C-同位素示踪技术,在节水、淹水、干旱三种灌溉方式下对杂交稻组合C两优396、威优46不同生育期的光合特性及同化产物的运转与分配进行研究。结果表明:在生育前期节水处理的叶绿素含量、净光合速率、同化产物分配比例与淹水处理的差异不显著;水稻抽穗后,淹水处理叶绿素含量与净光合速率下降幅度均大于节水处理,同化产物分配比例显著低于节水处理,最终导致产量也低于节水处理。而十旱处理在整个生育期的剑叶叶绿素含量、净光合速率、同化产物分配比例均低于节水、淹水处理,最终产量显著低于前两种处理。  相似文献   
107.
Background: The complementary use of different forms of soil nitrogen (N) might lead to a higher productivity of mixed forests than monocultures, but convincing evidence for temperate mixed forests is scarce.

Aims: We searched for species differences in N uptake rates and the preference for NH4+, NO3? or glycine among five temperate broad?leaved tree species (Acer pseudoplatanus, Carpinus betulus, Fagus sylvatica, Fraxinus excelsior, Tilia cordata) in a mature mixed stand.

Methods: 15N tracer was added to the soil and its accumulation in fine root biomass was analysed after 10 min, 1 h and 1 d.

Results: The estimated root uptake rates of the species were in the range of 5–46 µg N g?1 root h?1 for NH4+, 6–86 µg N g?1 h?1 for NO3? and 4–29 µg N g?1 h?1 for glycine during the first hour after tracer application. Carpinus, Tilia and Acer tended to prefer NH4+ over NO3?, while Fraxinus showed equal preference for both N forms and Fagus seemed to prefer NO3?.

Conclusions: The five co-existing tree species differed in uptake rates and partly in their N form preference, but complementarity in the use of different N forms seems to be of minor importance in this forest because tree species appear to be rather flexible in their N form use.  相似文献   
108.

Background and Aims

Xylem flows into most fruits decline as the fruit develop, with important effects on mineral and carbohydrate accumulation. It has been hypothesized that an increase in xylem hydraulic resistance (RT) contributes to this process. This study examined changes in RT that occur during development of the berry of kiwifruit (Actinidia deliciosa), identified the region within the fruit where changes were occurring, and tested whether a decrease in irradiance during fruit development caused an increase in RT, potentially contributing to decreased mineral accumulation in shaded fruit.

Methods

RT was measured using pressure chamber and flow meter methods, the two methods were compared, and the flow meter was also used to partition RT between the pedicel, receptacle and proximal and distal portions of the berry. Dye was used as a tracer for xylem function. Artificial shading was used to test the effect of light on RT, dye entry and mineral accumulation.

Key Results

RT decreased during the early phase of rapid fruit growth, but increased again as the fruit transitioned to a final period of slower growth. The most significant changes in resistance occurred in the receptacle, which initially contributed 20 % to RT, increasing to 90 % later in development. Dye also ceased moving beyond the receptacle from 70 d after anthesis. The two methods for measuring RT agreed in terms of the direction and timing of developmental changes in RT, but pressure chamber measurements were consistently higher than flow meter estimates of RT, prompting questions regarding which method is most appropriate for measuring fruit RT. Shading had no effect on berry growth but increased RT and decreased dye movement and calcium concentration.

Conclusions

Increased RT in the receptacle zone coincides with slowing fresh weight growth, reduced transpiration and rapid starch accumulation by the fruit. Developmental changes in RT may be connected to changes in phloem functioning and the maintenance of water potential gradients between the stem and the fruit. The effect of shade on RT extends earlier reports that shading can affect fruit vascular differentiation, xylem flows and mineral accumulation independently of effects on transpiration.  相似文献   
109.

Samples of floor materials used at present in different types of food plants were studied for their sensitivity to fouling and for their cleaning properties. A cleaning procedure close to that used in industry was carried out on seven different floor samples fouled with six industrial soils (e.g. green salad soil, reconstituted milk, and meat) and inoculated with spores of Bacillus stearothermophilus var. calidolactis as tracer. Sensitivity to fouling and the cleanability of the different floor materials were measured, and the results showed a significant difference between them. These differences were dependent upon the type of soil. Sensitivity to fouling and cleanability were not correlated with their slipping resistance characteristics.  相似文献   
110.
The economical preparation of microgram quantities of 14C-labeled proteins by in vacuo methylation with methyl iodide is described. The 14C radiolabeling was achieved by the covalent attachment of [14C]methyl groups onto amino and imidazole groups by reaction in vacuo with [14C]methyl iodide. The method was tested by investigating the biodistribution of 14C in rats that were fed 14C-labeled human soluble cluster of differentiation 14 (CD14) protein, a receptor for bacterial lipopolysaccharide. Two other control proteins, bovine serum albumin (BSA) and casein, were also labeled with 14C and used for comparative analysis to determine the following: (i) the efficacy and cost efficiency of the in vacuo radiolabeling procedure and (ii) the extent of incorporation of the 14C label into the organs of orogastrically fed 10-day-old Sprague–Dawley rats. [14C]BSA, [14C]casein, and [14C]CD14 were individually prepared with specific radioactivities of 34,400, 18,800, and 163,000 disintegrations per minute (dpm)/μg, respectively. It was found that the accumulation of 14C label in the organs of [14C]CD14-fed rats, most notably the persistence of 14C in the stomach 480 min postgavage, was temporally and spatially distinct from [14C]BSA and [14C]casein-fed rats.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号