首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8102篇
  免费   444篇
  国内免费   430篇
  2024年   14篇
  2023年   119篇
  2022年   181篇
  2021年   212篇
  2020年   191篇
  2019年   257篇
  2018年   252篇
  2017年   196篇
  2016年   199篇
  2015年   222篇
  2014年   354篇
  2013年   566篇
  2012年   296篇
  2011年   358篇
  2010年   256篇
  2009年   291篇
  2008年   294篇
  2007年   408篇
  2006年   365篇
  2005年   363篇
  2004年   309篇
  2003年   300篇
  2002年   295篇
  2001年   240篇
  2000年   217篇
  1999年   160篇
  1998年   189篇
  1997年   201篇
  1996年   166篇
  1995年   153篇
  1994年   151篇
  1993年   143篇
  1992年   119篇
  1991年   111篇
  1990年   112篇
  1989年   122篇
  1988年   94篇
  1987年   68篇
  1986年   58篇
  1985年   86篇
  1984年   53篇
  1983年   30篇
  1982年   46篇
  1981年   29篇
  1980年   32篇
  1979年   26篇
  1978年   15篇
  1977年   16篇
  1976年   13篇
  1973年   10篇
排序方式: 共有8976条查询结果,搜索用时 15 毫秒
991.
Glutamate 5-kinase (G5K) catalyzes the controlling first step of the synthesis of the osmoprotective amino acid proline, which feed-back inhibits G5K. Microbial G5K generally consists of one amino acid kinase (AAK) and one PUA (named after pseudo uridine synthases and archaeosine-specific transglycosylases) domain. To investigate the role of the PUA domain, we have deleted it from Escherichia coli G5K. We show that wild-type G5K requires free Mg for activity, it is tetrameric, and it aggregates to higher forms in a proline-dependent way. G5K lacking the PUA domain remains tetrameric, active, and proline-inhibitable, but the Mg requirement and the proline-triggered aggregation are greatly diminished and abolished, respectively, and more proline is needed for inhibition. We propose that the PUA domain modulates the function of the AAK domain, opening the way to potential PUA domain-mediated regulation of G5K; and that this domain moves, exposing new surfaces upon proline binding.  相似文献   
992.
Cytosolic Ca2+ mobilization, especially Ca2+ entry, is enhanced in platelets from type 2 diabetic individuals, which might result in platelet hyperaggregability. In the present study, we report an increased oxidant production in resting and stimulated platelets from diabetic donors. Pretreatment of platelets with catalase or trolox, an analog of vitamin E, reversed the enhanced Ca2+ entry, evoked by thapsigargin plus ionomycin or thrombin, observed in platelets from diabetic subjects, so that in the presence of these scavengers Ca2+ entry was similar in platelets from healthy and diabetic subjects. In contrast, mannitol was without effect on Ca2+ mobilization. Catalase and trolox reduced thrombin-induced aggregation in platelets from type 2 diabetic subjects, while mannitol did not modify thrombin-induced platelet hyperaggregability. We conclude that H2O2 and ONOO are likely involved in the enhanced Ca2+ mobilization observed in platelets from type 2 diabetic patients, which might lead to platelet hyperactivity and hyperaggregability.  相似文献   
993.
A variety of cellular functions are modulated by the physical properties of the cell membrane, and the modification of intracellular transfer, resulting from loss of membrane integrity, may contribute toward setting the cell onto the pathway of apoptosis. Apoptosis in lymphoid cells can be induced in different ways and biochemical modifications occur at an early phase of cell death, while the morphological features of apoptosis are evident later. We previously reported that DMSO is an efficient apoptosis-inducing factor in the human RPMI-8402 pre-T cell line. The aim of the present study was to verify the effect of DMSO on the plasma membrane fluidity, the intracellular calcium concentration and the phosphodiesterase activity in DMSO-induced apoptosis. Our results show a modification of membrane fluidity associated with an increase of intracellular Ca2+ concentration. Moreover, we demonstrate that these modifications are related to a decrease in the phosphodiesterase (PDE) activity. The correlation between the proceedings of added DMSO and the induction of apoptosis will provide significant information regarding the first part of the apoptotic process.  相似文献   
994.
Effects of T8993G mutation in mitochondrial DNA (mtDNA), associated with neurogenical muscle weakness, ataxia and retinitis pigmentosa (NARP), on the cytoskeleton, mitochondrial network and calcium homeostasis in human osteosarcoma cells were investigated. In 98% NARP and rho(0) (lacking mtDNA) cells, the organization of the mitochondrial network and actin cytoskeleton was disturbed. Capacitative calcium entry (CCE) was practically independent of mitochondrial energy status in osteosarcoma cell lines. The significantly slower Ca(2+) influx rates observed in 98% NARP and rho(0), in comparison to parental cells, indicates that proper actin cytoskeletal organization is important for CCE in these cells.  相似文献   
995.
Wustman BA  Morse DE  Evans JS 《Biopolymers》2004,74(5):363-376
The AP7 and AP24 proteins represent a class of mineral-interaction polypeptides that are found in the aragonite-containing nacre layer of mollusk shell (H. rufescens). These proteins have been shown to preferentially interfere with calcium carbonate mineral growth in vitro. It is believed that both proteins play an important role in aragonite polymorph selection in the mollusk shell. Previously, we demonstrated the 1-30 amino acid (AA) N-terminal sequences of AP7 and AP24 represent mineral interaction/modification domains in both proteins, as evidenced by their ability to frustrate calcium carbonate crystal growth at step edge regions. In this present report, using free N-terminal, C(alpha)-amide "capped" synthetic polypeptides representing the 1-30 AA regions of AP7 (AP7-1 polypeptide) and AP24 (AP24-1 polypeptide) and NMR spectroscopy, we confirm that both N-terminal sequences possess putative Ca (II) interaction polyanionic sequence regions (2 x -DD- in AP7-1, -DDDED- in AP24-1) that are random coil-like in structure. However, with regard to the remaining sequences regions, each polypeptide features unique structural differences. AP7-1 possesses an extended beta-strand or polyproline type II-like structure within the A11-M10, S12-V13, and S28-I27 sequence regions, with the remaining sequence regions adopting a random-coil-like structure, a trait common to other polyelectrolyte mineral-associated polypeptide sequences. Conversely, AP24-1 possesses random coil-like structure within A1-S9 and Q14-N16 sequence regions, and evidence for turn-like, bend, or loop conformation within the G10-N13, Q17-N24, and M29-F30 sequence regions, similar to the structures identified within the putative elastomeric proteins Lustrin A and sea urchin spicule matrix proteins. The similarities and differences in AP7 and AP24 N-terminal domain structure are discussed with regard to joint AP7-AP24 protein modification of calcium carbonate growth.  相似文献   
996.
We have investigated the involvement of store-operated Ca(2+) entry (SOCE) in the abnormal platelet Ca(2+) homeostasis in patients with non insulin-dependent diabetes mellitus (NIDDM). In a medium containing 180 mg/dL glucose, platelets from NIDDM patients showed an increased SOCE compared to controls. We found that tyrosine phosphorylation was elevated in platelets from NIDDM patients. Consistent with this, the activity of the tyrosine kinase pp60(src) is enhanced in platelets from diabetic patients. When the experiments were performed in a medium containing 90 mg/dL both, SOCE and pp60(src) activity, were similar to those found in control platelets. Our results indicate that SOCE is altered in platelets from NIDDM patients probably due to the increased activity of the tyrosine kinase pp60(src). Both, SOCE and pp60(src) activity in platelets from NIDDM patients are more susceptible to the extracellular glucose concentration, which seems to be involved in the dysfunction of these mechanisms.  相似文献   
997.
The ZnTs are a growing family of proteins involved in lowering or sequestration of cellular zinc. Using fluorescent measurements of zinc transport we have addressed the mechanism of action of the most ubiquitously expressed member of this family, ZnT-1. This protein has been shown to lower levels of intracellular zinc though the mechanism has remained elusive. The rate of zinc efflux in HEK293 cells expressing ZnT-1 was not accelerated in comparison to control cells, suggesting that ZnT-1 may be involved in regulating influx rather than efflux of zinc. Co-expression of the L-type calcium channel, a major route for zinc influx, and ZnT-1 resulted in a 3-fold reduction in the rate of zinc influx in HEK293 and PC-12 cells, indicating that ZnT-1 modulates zinc permeation through this channel. Immunoblot analysis indicates that ZnT-1 expression does not modulate LTCC expression. Our findings therefore indicate that ZnT-1 modulates the permeation of cations through LTCC, thereby, regulating cation homeostasis through this pathway. Furthermore, ZnT-1 may play a role in cellular ion homeostasis and thereby confer protection against pathophysiological events linked to cellular Ca(2+) or Zn(2+) permeation and cell death.  相似文献   
998.
Although the importance of mitochondria in patho-physiology has become increasingly evident, it remains unclear whether these organelles play a role in Ca(2+) handling by skeletal muscle. This undefined situation is mainly due to technical limitations in measuring Ca(2+) transients reliably during the contraction-relaxation cycle. Using two-photon microscopy and genetically expressed "cameleon" Ca(2+) sensors, we developed a robust system that enables the measurement of both cytoplasmic and mitochondrial Ca(2+) transients in vivo. We show here for the first time that, in vivo and under highly physiological conditions, mitochondria in mammalian skeletal muscle take up Ca(2+) during contraction induced by motor nerve stimulation and rapidly release it during relaxation. The mitochondrial Ca(2+) increase is delayed by a few milliseconds compared with the cytosolic Ca(2+) rise and occurs both during a single twitch and upon tetanic contraction.  相似文献   
999.
The modulation of Ca2+ signaling patterns during repetitive stimulations represents an important mechanism for integrating through time the inputs received by a cell. By either overexpressing the isoforms of protein kinase C (PKC) or inhibiting them with specific blockers, we investigated the role of this family of proteins in regulating the dynamic interplay of the intracellular Ca2+ pools. The effects of the different isoforms spanned from the reduction of ER Ca2+ release (PKCalpha) to the increase or reduction of mitochondrial Ca2+ uptake (PKCzeta and PKCbeta/PKCdelta, respectively). This PKC-dependent regulatory mechanism underlies the process of mitochondrial Ca2+ desensitization, which in turn modulates cellular responses (e.g., insulin secretion). These results demonstrate that organelle Ca2+ homeostasis (and in particular mitochondrial processing of Ca2+ signals) is tuned through the wide molecular repertoire of intracellular Ca2+ transducers.  相似文献   
1000.
Calcium is a critical mediator of many intracellular processes in eukaryotic cells. In the obligate intracellular parasite Toxoplasma gondii, for example, a rise in [Ca2+] is associated with significant morphological changes and rapid egress from host cells. To understand the mechanisms behind such dramatic effects, we isolated a mutant that is altered in its responses to the Ca2+ ionophore A23187 and found the affected gene encodes a homologue of Na+/H+ exchangers (NHEs) located on the parasite's plasma membrane. We show that in the absence of TgNHE1, Toxoplasma is resistant to ionophore-induced egress and extracellular death and amiloride-induced proton efflux inhibition. In addition, the mutant has increased levels of intracellular Ca2+, which explains its decreased sensitivity to A23187. These results provide direct genetic evidence of a role for NHE1 in Ca2+ homeostasis and important insight into how this ubiquitous pathogen senses and responds to changes in its environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号