首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5585篇
  免费   620篇
  国内免费   247篇
  2024年   27篇
  2023年   88篇
  2022年   130篇
  2021年   216篇
  2020年   332篇
  2019年   410篇
  2018年   279篇
  2017年   213篇
  2016年   225篇
  2015年   248篇
  2014年   285篇
  2013年   470篇
  2012年   249篇
  2011年   236篇
  2010年   220篇
  2009年   260篇
  2008年   283篇
  2007年   242篇
  2006年   234篇
  2005年   205篇
  2004年   188篇
  2003年   148篇
  2002年   156篇
  2001年   123篇
  2000年   90篇
  1999年   113篇
  1998年   92篇
  1997年   89篇
  1996年   52篇
  1995年   66篇
  1994年   56篇
  1993年   41篇
  1992年   47篇
  1991年   44篇
  1990年   36篇
  1989年   27篇
  1988年   28篇
  1987年   29篇
  1986年   23篇
  1985年   30篇
  1984年   20篇
  1983年   9篇
  1982年   22篇
  1981年   10篇
  1980年   12篇
  1979年   10篇
  1978年   6篇
  1977年   6篇
  1976年   9篇
  1974年   6篇
排序方式: 共有6452条查询结果,搜索用时 15 毫秒
991.
The migration of cereal aphids and the time of their arrival on winter cereal crops in autumn and spring are of particular importance for plant disease (e.g. barley yellow dwarf virus infection) and related yield losses. In order to identify days with migration potentials in autumn and spring, suction trap data from 29 and 45 case studies (locations and years), respectively, were set‐off against meteorological parameters, focusing on the early immigration periods in autumn (22 September to 1 November) and spring (1 May to 9 June). The number of cereal aphids caught in a suction trap increased with increasing temperature, global radiation and duration of sunshine and decreased with increasing precipitation, relative humidity and wind speed. According to linear regression analyses, the temperature, global radiation and wind speed were most frequently and significantly associated with migration, suggesting that they have a major impact on flight activity. For subsequent model development, suction trap catches from different case studies were pooled and binarily classified as days with or without migration as defined by a certain number of migrating cereal aphids. Linear discriminant analyses of several predictor variables (assessed during light hours of a given day) were then performed based on the binary response variables. Three models were used to predict days with suction trap catches ≥1, ≥4 or ≥10 migrating cereal aphids in autumn. Due to the predominance of Rhopalosiphum padi individuals (99.3% of total cereal aphid catch), no distinction between species (R. padi and Sitobion avenae) was made in autumn. As the suction trap catches were lower and species dominance changed in spring, three further models were developed for analysis of all cereal aphid species, R. padi only, and Metopolophium dirhodum and S. avenae combined in spring. The empirical, cross‐classification and receiver operating characteristic analyses performed for model validation showed different levels of prediction accuracy. Additional datasets selected at random before model construction and parameterization showed that predictions by the six migration models were 33–81% correct. The models are useful for determining when to start field evaluations. Furthermore, they provide information on the size of the migrating aphid population and, thus, on the importance of immigration for early aphid population development in cereal crops in a given season.  相似文献   
992.
993.
Pairings between heterokaryons and homokaryons of Agaricomycete fungi (he-ho pairings) can lead to either heterokaryotization of the homokaryon or displacement of the homokaryotic nucleus through migration of nuclei from the heterokaryon into the homokaryon. In species of Agaricomycetes with multinucleate cells (>2 nuclei per cell), he-ho pairings could result in the stable or transient formation of a hypha with three genetically different nuclei (trikaryons). In this study, he-ho pairings were conducted using the multinucleate Agaricomycete Heterobasidion parviporum to determine whether trikaryons can be formed in the laboratory and whether nuclear genotype affects migration and heterokaryon formation. Nuclei were tracked by genotyping the heterokaryotic mycelium using nucleus-specific microsatellite markers. The data indicated that certain nuclear combinations were favored, and that nuclei from some strains had a higher rate of migration. A high percentage of trikaryons (19 %) displaying three microsatellite alleles per locus were identified among subcultures of the he-ho pairings. Using hyphal tip and conidial isolation, we verified that nuclei of three different mating types can inhabit the same mycelium, and one of the trikaryotic strains was judged to be semi-stable over multiple sub-culturing steps, with some hyphal tips that retained three alleles and others that reduced to two alleles per locus. These results demonstrate that nuclear competition and selection are possible outcomes of heterokaryon-homokaryon interactions in H. parviporum and confirm that ratios of component nuclei in heterokaryons are not strictly 1:1. The high rate of trikaryon formation in this study suggests that fungi with multinucleate cells may have the potential for greater genetic diversity and recombination relative to dikaryotic fungi.  相似文献   
994.
Most plant pathogens present complex life cycles, in which the clonal reproduction may impede the delimitation of population entities. By studying the genetic structure of the wheat yellow rust caused by Puccinia striiformis f.sp. tritici (PST), we highlighted difficulties impeding population delimitation in highly clonal species. Despite the high dispersal potential of PST, southern France isolates were shown to be divergent from a northwestern European population. A 2-year survey was performed in the Mediterranean region to assess the geographic distribution of southern isolates: 453 isolates collected in 11 countries were genotyped using 15 simple sequence repeat markers. A subsample was analysed for virulence against 23 resistance genes. The dominant strain in the western Mediterranean region was further studied with amplified fragment length polymorphism markers to test for a geographic substructure. Both 'individual'- and 'population'-centred analyses of polymorphism markers revealed two south-specific groups: a predominant group, with a broad variability and a wide distribution in both western and eastern Mediterranean countries, and a minor group in the western Mediterranean. The east–west gradient of genetic diversity suggested gene flow from the Middle East with subsequent founder effects and genetic divergence, and demonstrated the local survival of a western Mediterranean population. The high frequency of the resistance gene Yr8 observed in cultivars from Tunisia and Algeria may contribute to maintain the north/south structure observed in France. In addition to migration and local adaptation, the dynamics of clonal lineage diversification and replacement should be considered to define population entities in strongly clonal species.  相似文献   
995.
The geology and climate of the western Mediterranean area were strongly modified during the Late Tertiary and the Quaternary. These geological and climatic events are thought to have induced changes in the population histories of plants in the Iberian Peninsula. However, fine-scale genetic spatial architecture across western Mediterranean steppe plant refugia has rarely been investigated. A population genetic analysis of amplified fragment length polymorphism variation was conducted on present-day, relict populations of Ferula loscosii (Apiaceae). This species exhibits high individual/population numbers in the middle Ebro river valley and, according to the hypothesis of an abundant-centre distribution, these northern populations might represent a long-standing/ancestral distribution centre. However, our results suggest that the decimated southern and central Iberian populations are more variable and structured than the northeastern ones, representing the likely vestiges of an ancestral distribution centre of the species. Phylogeographical analysis suggests that F. loscosii likely originated in southern Spain and then migrated towards the central and northeastern ranges, further supporting a Late Miocene southern-bound Mediterranean migratory way for its oriental steppe ancestors. In addition, different glacial-induced conditions affected the southern and northern steppe Iberian refugia during the Quaternary. The contrasting genetic homogeneity of the Ebro valley range populations compared to the southern Iberian ones possibly reflects more severe bottlenecks and subsequent genetic drift experienced by populations of the northern Iberia refugium during the Pleistocene, followed by successful postglacial expansion from only a few founder plants.  相似文献   
996.
Ecological theory suggests that several demographic factors influence metapopulation extinction risk, including synchrony in population size between subpopulations, metapopulation size and the magnitude of fluctuations in population size. Theoretically, each of these is influenced by the rate of migration between subpopulations. Here we report on an experiment where we manipulated migration rate within metapopulations of the freshwater zooplankton Daphnia magna to examine how migration influenced each of these demographic variables, and subsequent effects on metapopulation extinction. In addition, our experimental procedures introduced unplanned but controlled differences between metapopulations in light intensity, enabling us to examine the relative influences of environmental and demographic factors. We found that increasing migration rate increased subpopulation synchrony. We failed to detect effects of migration on population size and fluctuations in population size at the metapopulation or subpopulation level, however. In contrast, light intensity did not influence synchrony, but was positively correlated with population size and negatively correlated with population fluctuation. Finally, synchrony did not influence time to extinction, while population size and the magnitude of fluctuations did. We conclude that environmental factors had a greater influence on extinction risk than demographic factors, and that metapopulation size and fluctuation were more important to extinction risk than metapopulation synchrony.  相似文献   
997.
Discerning the adaptive significance of migratory strategies poses significant challenges, not the least of which is measuring migratory capability in natural populations. We take advantage of a visible migratory dimorphism to study variation in migratory capability in the stream-dwelling water strider, Aquarius remigis. Theory predicts loss of migratory capability in this species because streams have been viewed as stable and persistent habitats. As expected, A. remigis lack wings throughout most of North America. However, Californian populations are noted for unexpectedly high frequencies of winged, migratory morphs. To deduce the adaptive significance of this anomalous regional variation, we compare proportion winged among 37 Californian populations. We discover a strong, positive correlation with altitude, but no correlations with latitude, rainfall or stream size. A common garden experiment reveals that both proportion winged and its reaction norm to temperature differ genetically among populations, and a half-sibling experiment demonstrates that wing morph has high heritability, moderate genetic correlations across environments and a significant genotype by environment interaction. These results support the hypothesis that proportion winged and its reaction norm to temperature have diverged genetically in California. We conclude that high migratory capability is an evolutionary adaptation to the unusual harshness and instability of Californian stream habitats, and particularly to the high elevational gradients and extreme seasonal variation characteristic of montane streams.  相似文献   
998.
1. Return of large‐bodied zooplankton populations is of key importance for creating a shift from a turbid to a clear‐water state in shallow lakes after a nutrient loading reduction. In temperate lakes, recovery is promoted by submerged macrophytes which function as a daytime refuge for large zooplankton. However, recovery of macrophytes is often delayed and use of artificial plant beds (APB) has been suggested as a tool to enhance zooplankton refuges, thereby reinforcing the shift to a clear‐water state and, eventually, colonisation of natural plants. 2. To further evaluate the potential of APB in lake restoration, we followed the day–night habitat choices of zooplankton throughout summer in a clear and a turbid lake. Observations were made in the pelagic and littoral zones and in APB in the littoral representing three different plant densities (coverage 0%, 40% and 80%). 3. In the clear lake, the zooplankton (primarily Daphnia) were mainly found in the pelagic area in spring, but from mid‐May they were particularly abundant in the APB and almost exclusively so in mid‐June and July, where they appeared in extremely high densities during day (up to 2600 ind. L−1). During night Daphnia densities were overall more equally distributed between the five habitats. Ceriodaphnia was proportionally more abundant in the APB during most of the season. Cyclopoids were more abundant in the high APB during day but were equally distributed between the five habitats during night. 4. In the turbid lake, however, no clear aggregation was observed in the APB for either of the pelagic genera (Daphnia and Bosmina). This may reflect a higher refuge effect in the open water due to the higher turbidity, reduced ability to orient to plant beds and a significantly higher fish density (mainly of roach, Rutilus rutilus, and perch, Perca fluviatilis) in the plant beds than in the clear lake. Chydorus was found in much higher proportions among the plants, while cyclopoids, particularly the pelagic Cyclops vicinus, dominated in the pelagic during day and in the pelagic and high density plants during night. 5. Our results suggest that water clarity is decisive for the habitat choice of large‐bodied zooplankton and that introduction of APB as a restoration measure to enhance zooplankton survival is only a useful tool when water clarity increases following loading reduction. Our results indicate that dense APB will be the most efficient.  相似文献   
999.
Although there is known to be a marked concentration of reactive microglia in the substantia nigra pars compacta (SNpc) of patients with Parkinson's disease (PD), a disorder in which α-synuclein plays a key pathogenic role, the specific roles of α-synuclein and microglia remains poorly understood. In this study, we investigated the effects of α-synuclein and the mechanisms of invasive microglial migration into the SNpc. We show that α-synuclein up-regulates the expressions of the cell adhesion molecule CD44 and the cell surface protease membrane-type 1 matrix metalloproteinase through the extracellular regulated kinases 1/2 pathway. These concurrent inductions increased the generation of soluble CD44 to liberate microglia from the surrounding extracellular matrix for migration. The effects of α-synuclein were identical in BV-2 murine microglial cells subjected to cDNA transfection and extracellular treatment. These inductions in primary microglial cultures of C57Bl/6 mice were identical to those in BV-2 cells. α-Synuclein-induced microglial migration into the SNpc was confirmed in vivo using a 6-hydroxydopamine mouse model of PD. Our data demonstrate a correlation between α-synuclein-induced phenotypic changes and microglial migration. With the recruitment of the microglial population into the SNpc during dopaminergic neurodegeneration, α-synuclein may play a role in accelerating the pathogenesis of PD.  相似文献   
1000.
Many migratory bird species fly mainly during the night (nocturnal migrants), others during daytime (diurnal migrants) and still others during both night and day. Need to forage during the day, atmospheric structure, predator avoidance and orientation conditions have been proposed as explanations for the widespread occurrence of nocturnal migration. However, the general principles that determine the basic nocturnal-diurnal variation in flight habits are poorly known. In the present study optimal timing of migratory flights, giving the minimum total duration of the migratory journey, is evaluated in a schematic way in relation to ecological conditions for energy gain in foraging and for energy costs in flight. There exists a strong and fundamental advantage of flying by night because foraging time is maximized and energy deposition can take place on days immediately after and prior to the nocturnal flights. The increase in migration speed by nocturnal compared with diurnal migration will be largest for birds with low flight costs and high energy deposition rates. Diurnal migration will be optimal if it is associated with efficient energy gain immediately after a migratory flight because suitable stopover/foraging places have been located during the flight or if energy losses during flight are substantially reduced by thermal soaring and/or by fly-and-forage migration. A strategy of combined diurnal and nocturnal migration may be optimal when birds migrate across regions with relatively poor conditions for energy deposition (not only severe but also soft barriers). Predictions about variable timing of migratory flights depending on changing foraging and environmental conditions along the migration route may be tested for individual birds by analysing satellite tracking results with respect to daily travel routines in different regions. Documenting and understanding the adaptive variability in daily travel schedules among migrating animals constitute a fascinating challenge for future research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号