首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23448篇
  免费   2168篇
  国内免费   2327篇
  2024年   68篇
  2023年   329篇
  2022年   485篇
  2021年   643篇
  2020年   640篇
  2019年   780篇
  2018年   719篇
  2017年   721篇
  2016年   709篇
  2015年   827篇
  2014年   920篇
  2013年   1359篇
  2012年   830篇
  2011年   1112篇
  2010年   993篇
  2009年   1438篇
  2008年   1357篇
  2007年   1409篇
  2006年   1367篇
  2005年   1380篇
  2004年   1248篇
  2003年   1051篇
  2002年   947篇
  2001年   594篇
  2000年   554篇
  1999年   590篇
  1998年   558篇
  1997年   464篇
  1996年   390篇
  1995年   432篇
  1994年   360篇
  1993年   302篇
  1992年   264篇
  1991年   215篇
  1990年   211篇
  1989年   195篇
  1988年   156篇
  1987年   149篇
  1986年   109篇
  1985年   157篇
  1984年   166篇
  1983年   116篇
  1982年   134篇
  1981年   75篇
  1980年   93篇
  1979年   57篇
  1978年   47篇
  1977年   36篇
  1976年   37篇
  1973年   40篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
The abundant existence of proteins and regions that possess specific functions without being uniquely folded into unique 3D structures has become accepted by a significant number of protein scientists. Sequences of these intrinsically disordered proteins (IDPs) and IDP regions (IDPRs) are characterized by a number of specific features, such as low overall hydrophobicity and high net charge which makes these proteins predictable. IDPs/IDPRs possess large hydrodynamic volumes, low contents of ordered secondary structure, and are characterized by high structural heterogeneity. They are very flexible, but some may undergo disorder to order transitions in the presence of natural ligands. The degree of these structural rearrangements varies over a very wide range. IDPs/IDPRs are tightly controlled under the normal conditions and have numerous specific functions that complement functions of ordered proteins and domains. When lacking proper control, they have multiple roles in pathogenesis of various human diseases. Gaining structural and functional information about these proteins is a challenge, since they do not typically “freeze” while their “pictures are taken.” However, despite or perhaps because of the experimental challenges, these fuzzy objects with fuzzy structures and fuzzy functions are among the most interesting targets for modern protein research. This review briefly summarizes some of the recent advances in this exciting field and considers some of the basic lessons learned from the analysis of physics, chemistry, and biology of IDPs.  相似文献   
992.
An increasing number of cryo‐electron microscopy (cryo‐EM) density maps are being generated with suitable resolution to trace the protein backbone and guide sidechain placement. Generating and evaluating atomic models based on such maps would be greatly facilitated by independent validation metrics for assessing the fit of the models to the data. We describe such a metric based on the fit of atomic models with independent test maps from single particle reconstructions not used in model refinement. The metric provides a means to determine the proper balance between the fit to the density and model energy and stereochemistry during refinement, and is likely to be useful in determining values of model building and refinement metaparameters quite generally.  相似文献   
993.
Designed ankyrin repeat proteins (DARPins) are well‐established binding molecules based on a highly stable nonantibody scaffold. Building on 13 crystal structures of DARPin‐target complexes and stability measurements of DARPin mutants, we have generated a new DARPin library containing an extended randomized surface. To counteract the enrichment of unspecific hydrophobic binders during selections against difficult targets containing hydrophobic surfaces such as membrane proteins, the frequency of apolar residues at diversified positions was drastically reduced and substituted by an increased number of tyrosines. Ribosome display selections against two human caspases and membrane transporter AcrB yielded highly enriched pools of unique and strong DARPin binders which were mainly monomeric. We noted a prominent enrichment of tryptophan residues during binder selections. A crystal structure of a representative of this library in complex with caspase‐7 visualizes the key roles of both tryptophans and tyrosines in providing target contacts. These aromatic and polar side chains thus substitute the apolar residues valine, leucine, isoleucine, methionine, and phenylalanine of the original DARPins. Our work describes biophysical and structural analyses required to extend existing binder scaffolds and simplifies an existing protocol for the assembly of highly diverse synthetic binder libraries.  相似文献   
994.
The mechanosensitive channel of small conductance (MscS) contributes to the survival of bacteria during osmotic downshock by transiently opening large diameter pores for the efflux of cellular contents before the membrane ruptures. Two crystal structures of the Escherichia coli MscS are currently available, the wild type protein in a nonconducting state at 3.7 Å resolution (Bass et al., Science 2002; 298:1582–1587) and the Ala106Val variant in an open state at 3.45 Å resolution (Wang et al., Science 2008; 321:1179–1183). Both structures used protein solubilized in the detergent fos‐choline‐14. We report here crystal structures of MscS from E. coli and Helicobacter pylori solubilized in the detergent β‐dodecylmaltoside at resolutions of 4.4 and 4.2 Å, respectively. While the cytoplasmic domains are unchanged in these structures, distinct conformations of the transmembrane domains are observed. Intriguingly, β‐dodecylmaltoside solubilized wild type E. coli MscS adopts the open state structure of A106V E. coli MscS, while H. pylori MscS resembles the nonconducting state structure observed for fos‐choline‐14 solubilized E. coli MscS. These results highlight the sensitivity of membrane protein conformational equilibria to variations in detergent, crystallization conditions, and protein sequence.  相似文献   
995.
The trend of closely related taxa to retain similar environmental preferences mediated by inherited traits suggests that several patterns observed at the community scale originate from longer evolutionary processes. While the effects of phylogenetic relatedness have been previously studied within a single genus or family, lineage‐specific effects on the ecological processes governing community assembly have rarely been studied for entire communities or flora. Here, we measured how community phylogenetic structure varies across a wide elevation gradient for plant lineages represented by 35 families, using a co‐occurrence index and net relatedness index (NRI). We propose a framework that analyses each lineage separately and reveals the trend of ecological assembly at tree nodes. We found prevailing phylogenetic clustering for more ancient nodes and overdispersion in more recent tree nodes. Closely related species may thus rapidly evolve new environmental tolerances to radiate into distinct communities, while older lineages likely retain inherent environmental tolerances to occupy communities in similar environments, either through efficient dispersal mechanisms or the exclusion of older lineages with more divergent environmental tolerances. Our study illustrates the importance of disentangling the patterns of community assembly among lineages to better interpret the ecological role of traits. It also sheds light on studies reporting absence of phylogenetic signal, and opens new perspectives on the analysis of niche and trait conservatism across lineages.  相似文献   
996.
Gene flow through dispersal has traditionally been thought to function as a force opposing evolutionary differentiation. However, directional gene flow may actually reinforce divergence of populations in close proximity. This study documents the phenotypic differentiation over more than two decades in body size (tarsus length) at a very short spatial scale (1.1 km) within a population of pied flycatchers Ficedula hypoleuca inhabiting deciduous and coniferous habitats. Unlike females, males breeding in the deciduous forest were consistently larger than those from the managed coniferous forest. This assortment by size is likely explained by preset habitat preferences leading to dominance of the largest males and exclusion of the smallest ones toward the nonpreferred coniferous forest coupled with directional dispersal. Movements of males between forests were nonrandom with respect to body size and flow rate, which might function to maintain the phenotypic variation in this heritable trait at such a small spatial scale. However, a deeply rooted preference for the deciduous habitat might not be in line with its quality due to the increased levels of breeding density of hole‐nesting competitors therein. These results illustrate how eco‐evolutionary scenarios can develop under directional gene flow over surprisingly small spatial scales. Our findings come on top of recent studies concerning new ways in which dispersal and gene flow can influence microevolution.  相似文献   
997.
Frequently, vital rates are driven by directional, long‐term environmental changes. Many of these are of great importance, such as land degradation, climate change, and succession. Traditional demographic methods assume a constant or stationary environment, and thus are inappropriate to analyze populations subject to these changes. They also require repeat surveys of the individuals as change unfolds. Methods for reconstructing such lengthy processes are needed. We present a model that, based on a time series of population size structures and densities, reconstructs the impact of directional environmental changes on vital rates. The model uses integral projection models and maximum likelihood to identify the rates that best reconstructs the time series. The procedure was validated with artificial and real data. The former involved simulated species with widely different demographic behaviors. The latter used a chronosequence of populations of an endangered cactus subject to increasing anthropogenic disturbance. In our simulations, the vital rates and their change were always reconstructed accurately. Nevertheless, the model frequently produced alternative results. The use of coarse knowledge of the species' biology (whether vital rates increase or decrease with size or their plausible values) allowed the correct rates to be identified with a 90% success rate. With real data, the model correctly reconstructed the effects of disturbance on vital rates. These effects were previously known from two populations for which demographic data were available. Our procedure seems robust, as the data violated several of the model's assumptions. Thus, time series of size structures and densities contain the necessary information to reconstruct changing vital rates. However, additional biological knowledge may be required to provide reliable results. Because time series of size structures and densities are available for many species or can be rapidly generated, our model can contribute to understand populations that face highly pressing environmental problems.  相似文献   
998.
Major disjunctions among marine communities in southeastern Australia have been well documented, although explanations for biogeographic structuring remain uncertain. Converging ocean currents, environmental gradients, and habitat discontinuities have been hypothesized as likely drivers of structuring in many species, although the extent to which species are affected appears largely dependent on specific life histories and ecologies. Understanding these relationships is critical to the management of native and invasive species, and the preservation of evolutionary processes that shape biodiversity in this region. In this study we test the direct influence of ocean currents on the genetic structure of a passive disperser across a major biogeographic barrier. Donax deltoides (Veneroida: Donacidae) is an intertidal, soft‐sediment mollusc and an ideal surrogate for testing this relationship, given its lack of habitat constraints in this region, and its immense dispersal potential driven by year‐long spawning and long‐lived planktonic larvae. We assessed allele frequencies at 10 polymorphic microsatellite loci across 11 sample locations spanning the barrier region and identified genetic structure consistent with the major ocean currents of southeastern Australia. Analysis of mitochondrial DNA sequence data indicated no evidence of genetic structuring, but signatures of a species range expansion corresponding with historical inundations of the Bassian Isthmus. Our results indicate that ocean currents are likely to be the most influential factor affecting the genetic structure of D. deltoides and a likely physical barrier for passive dispersing marine fauna generally in southeastern Australia.  相似文献   
999.
In this study, allometric trajectories for 51 rodent species, comprising equal representatives from each of the major clades (Ctenohystrica, Muroidea, Sciuridae), are compared in a multivariate morphospace (=allometric space) to quantify magnitudes of disparity in cranial growth. Variability in allometric trajectory patterns was compared to measures of adult disparity in each clade, and dietary habit among the examined species, which together encapsulated an ecomorphological breadth. Results indicate that the evolution of allometric trajectories in rodents is characterized by different features in sciurids compared with muroids and Ctenohystrica. Sciuridae was found to have a reduced magnitude of inter‐trajectory change and growth patterns with less variation in allometric coefficient values among members. In contrast, a greater magnitude of difference between trajectories and an increased variation in allometric coefficient values was evident for both Ctenohystrica and muroids. Ctenohystrica and muroids achieved considerably higher adult disparities than sciurids, suggesting that conservatism in allometric trajectory modification may constrain morphological diversity in rodents. The results provide support for a role of ecology (dietary habit) in the evolution of allometric trajectories in rodents.  相似文献   
1000.
植物谷胱甘肽过氧化物酶(glutathione peroxidase,GPX)是清除体内活性氧的一种关键酶,在植物抗逆反应中发挥重要作用.本研究从水稻中克隆到2个GPX基因,分别为OsGPX3和OsGPX4.OsGPX3和OsGPX4分别编码238和234个氨基酸组成的蛋白质,预测分子量分别是25.84 kD和25.07 kD.两个基因都包含5个内含子,但是两个基因所对应的内含子长度具有较大变异.组织表达谱分析发现这2个基因在根、茎、叶和叶鞘中均表达,是组成型表达基因.在大肠杆菌中表达并纯化了这2个基因的重组蛋白,酶活性分析显示OsGPX3和OsGPX4蛋白对底物H2O2、tBOOH和COOH具有较高活性,但是OsGPX3对3种底物的活性均高于OsGPX4,蛋白质酶活性的差异预示着这2个基因可能存在功能上的分化.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号