首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23473篇
  免费   2179篇
  国内免费   2327篇
  2024年   76篇
  2023年   339篇
  2022年   502篇
  2021年   643篇
  2020年   641篇
  2019年   780篇
  2018年   719篇
  2017年   721篇
  2016年   709篇
  2015年   827篇
  2014年   920篇
  2013年   1359篇
  2012年   830篇
  2011年   1112篇
  2010年   993篇
  2009年   1438篇
  2008年   1357篇
  2007年   1409篇
  2006年   1367篇
  2005年   1380篇
  2004年   1248篇
  2003年   1051篇
  2002年   947篇
  2001年   594篇
  2000年   554篇
  1999年   590篇
  1998年   558篇
  1997年   464篇
  1996年   390篇
  1995年   432篇
  1994年   360篇
  1993年   302篇
  1992年   264篇
  1991年   215篇
  1990年   211篇
  1989年   195篇
  1988年   156篇
  1987年   149篇
  1986年   109篇
  1985年   157篇
  1984年   166篇
  1983年   116篇
  1982年   134篇
  1981年   75篇
  1980年   93篇
  1979年   57篇
  1978年   47篇
  1977年   36篇
  1976年   37篇
  1973年   40篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
151.
Current perspectives on plasmodesmata: structure and function   总被引:2,自引:0,他引:2  
Recent studies on plasmodesmata have shown that these important intercellular passages for communication and transport are much more sophisticated in both structure and regulatory abilities than previously imagined. A complex, but not well understood, substructure has been revealed by a variety of increasingly reliable ultrastructural techniques. Proteinaceous particles are seen within the cytoplasmic sleeve surrounding the desmotubule. Dye-coupling studies have provided experimental evidence for the physical pathway of solute movement, supporting conclusions about substructural dimensions within plasmodesmata drawn from the ultrastructural studies. Calcium has been identified as a major factor in the regulation of intercellular communication via plasmodesmata. Evidence from studies on virus movement through plasmodesmata suggests a direct interaction between virallycoded movement proteins and plasmodesmata in the systemic spread of many viruses. There is increasing evidence, albeit indirect, that in some plant species phloem loading may involve transport of photoassimilate entirely within the symplast from mesophyll cells to the sieve element-companion cell complexes of minor veins.  相似文献   
152.
To identify conserved and functionally important features in the intergenic sequences of ribosomal DNAs, the nucleotide sequence of the 18–25S rRNA intergene region in tobacco rDNA was determined and compared to that of other higher plants. Unlike previous comparisons of more diverse organisms, sufficient sequence homology is retained in the higher plants to examine the evolutionary changes which make these regions diverse. Estimates of the secondary structure permit the identification of a core-like structure which appears to maintain the processed sites in close proximity and can be identified in the more divergent sequences.  相似文献   
153.
We construct a theoretical model of the transition structure for the carboxylation reaction of ribulose-1,5-biphosphate catalyzed by Rubisco. This is a first-order saddle point on the energy hypersurface for the nucleophilic attack of carbon dioxide on CH3-(CHOH)3-CH3 at the C2 center.Ab initio analytical gradients methods at a 4-31G basis set level are used.The carbon framework and oxygens of the stationary structure superpose with the corresponding atoms of 2-carboxyarabinitol-1,5-biphosphate, which is a transition state analog that has recently been highly refined with X-ray methods. The hydroxyl group in C3 iscis to the C2 oxygen. The C3 center is somewhat pyramidized, the dienol O2-C2-C3-O3 is not planar.The geometry of the transition state allows for simple explanations of both the enolization of Rubisco's substrate ribulose-1,5-biphosphate, O3PO-CH2-CO-(CHOH)2-CH2-OPO3 and oxygenation reaction. The former is due to the pyramidal deformation at C3 and out of plane of O2-C2-C3-O3 framework: the enoliation is intramolecular and is probably enhanced by proton tunnelling. The latter is related with the fact that a rotation around an ethylene-like bond brings the triplet state down in energy. The reactive skeleton has a stationary geometry in the triplet state not very different from the one obtained in the global transition structure. There, the triplet is only 9 kcal/mol above the singlet. The spin densities at C2 and C3 centers clearly indicate the place where oxygenation will take place.  相似文献   
154.
The design of single-stranded nucleic acid knots   总被引:1,自引:0,他引:1  
A general strategy is described for the synthesis of single-stranded nucleic acid knots. Control of nucleic acid sequence is used to direct the formation of secondary structures that produce the target topology. The key feature of the strategy is the equation of a half-turn of double helical DNA or RNA with a node in a knot. By forming nodes from complementary DNA sequences, it appears possible to direct the assembly of any simple knot. Stabilization of individual nodes may be achieved by constructing them from long regions containing both B-DNA and Z-DNA. Control over the braiding of DNA that acts as a link between node-forming domains can be realized by condensing the nodes into well-defined DNA structures, such as extended domains of linear duplex, branched junctions, antijunctions or mesojunctions. Further topological control may be derived from the pairing of linker regions to complementary single-stranded molecules, thereby preventing them from braiding in an undesirable fashion.  相似文献   
155.
The electronic structures of newly designed polyimide systems (ethenetetracarboxylic 1,2:1,2-dianhydride-diaminoethyne (PI-A) and ethenetetracarboxylic 1,1:2,2-dianhydride-diaminoethyne(PI-B)) are studied in detail with respect to their optimized geometries on the basis of the one-dimensional tight-binding self-consistent field crystal-orbital method. The computational results have revealed that PI-B shows intriguing properties such as a very small band gap and a wide bandwidth near the frontier level, compared with PI-A and other polyimides. Since PI-B would be a promising candidate for a new electric conducting material, a reaction diagram for this polymer is also proposed.Also affiliated to Central Research Laboratories, Matsushita Electric Industrial Co., Moriguchi 570, Japan.  相似文献   
156.
The three-dimensional solution-state structure is reported for the zinc-substituted form of rubredoxin (Rd) from the marine hyperthermophilic archaebacterium Pyrococcus furiosus, an organism that grows optimally at 100 degrees C. Structures were generated with DSPACE by a hybrid distance geometry (DG)-based simulated annealing (SA) approach that employed 403 nuclear Overhauser effect (NOE)-derived interproton distance restraints, including 67 interresidue, 124 sequential (i-j = 1), 75 medium-range (i-j = 2-5), and 137 long-range (i-j > 5) restraints. All lower interproton distance bounds were set at the sum of the van Der Waals radii (1.8 A), and upper bounds of 2.7 A, 3.3 A, and 5.0 A were employed to represent qualitatively observed strong, medium, and weak NOE cross peak intensities, respectively. Twenty-three backbone-backbone, six backbone-sulfur (Cys), two backbone-side chain, and two side chain-side chain hydrogen bond restraints were include for structure refinement, yielding a total of 436 nonbonded restraints, which averages to > 16 restraints per residue. A total of 10 structures generated from random atom positions and 30 structures generated by molecular replacement using the backbone coordinates of Clostridium pasteurianum Rd converged to a common conformation, with the average penalty (= sum of the square of the distance bounds violations; +/- standard deviation) of 0.024 +/- 0.003 A2 and a maximum total penalty of 0.035 A2. Superposition of the backbone atoms (C, C alpha, N) of residues A1-L51 for all 40 structures afforded an average pairwise root mean square (rms) deviation value (+/- SD) of 0.42 +/- 0.07 A. Superposition of all heavy atoms for residues A1-L51, including those of structurally undefined external side chains, afforded an average pairwise rms deviation of 0.72 +/- 0.08 A. Qualitative comparison of back-calculated and experimental two-dimensional NOESY spectra indicate that the DG/SA structures are consistent with the experimental spectra. The global folding of P. furiosus Zn(Rd) is remarkably similar to the folding observed by X-ray crystallography for native Rd from the mesophilic organism C. pasteurianum, with the average rms deviation value for backbone atoms of residues A1-L51 of P. furiosus Zn(Rd) superposed with respect to residues K2-V52 of C. pasteurianum Rd of 0.77 +/- 0.06 A. The conformations of aromatic residues that compose the hydrophobic cores of the two proteins are also similar. However, P. furiosus Rd contains several unique structural elements, including at least four additional hydrogen bonds and three potential electrostatic interactions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
157.
In a systematic attempt to identify residues important in the folding and stability of T4 lysozyme, five amino acids within alpha-helix 126-134 were substituted by alanine, either singly or in selected combinations. Together with three alanines already present in the wild-type structure this provided a set of mutant proteins with up to eight alanines in sequence. All the variants behaved normally, suggesting that the majority of residues in the alpha-helix are nonessential for the folding of T4 lysozyme. Of the five individual alanine substitutions it is inferred that four result in slightly increased protein stability and one, the replacement of a buried leucine with alanine, substantially decreased stability. The results support the idea that alanine is a residue of high helix propensity. The change in protein stability observed for each of the multiple mutants is approximately equal to the sum of the energies associated with each of the constituent substitutions. All of the variants could be crystallized isomorphously with wild-type lysozyme, and, with one trivial exception, their structures were determined at high resolution. Substitution of the largely solvent-exposed residues Asp 127, Glu 128, and Val 131 with alanine caused essentially no change in structure except at the immediate site of replacement. Substitutions of the partially buried Asn 132 and the buried Leu 133 with alanine were associated with modest (< or = 0.4 A) structural adjustments. The structural changes seen in the multiple mutants were essentially a combination of those seen in the constituent single replacements. The different replacements therefore act essentially independently not only so far as changes in energy are concerned but also in their effect on structure. The destabilizing replacement Leu 133-->Ala made alpha-helix 126-134 somewhat less regular. Incorporation of additional alanine replacements tended to make the helix more uniform. For the penta-alanine variant a distinct change occurred in a crystal-packing contact, and the "hinge-bending angle" between the amino- and carboxy-terminal domains changed by 3.6 degrees. This tends to confirm that such hinge-bending in T4 lysozyme is a low-energy conformational change.  相似文献   
158.
Recent publication of the atomic structure of G-actin (Kabsch, W., Mannherz, H. G., Suck, D., Pai, E. F., & Holmes, K. C., 1990, Nature 347, 37-44) raises questions about how the conformation of actin changes upon its polymerization. In this work, the effects of various quenchers of etheno-nucleotides bound to G- and F-actin were examined in order to assess polymerization-related changes in the nucleotide phosphate site. The Mg(2+)-induced polymerization of actin quenched the fluorescence of the etheno-nucleotides by approximately 20% simultaneously with the increase in light scattering by actin. A conformational change at the nucleotide binding site was also indicated by greater accessibility of F-actin than G-actin to positively, negatively, and neutrally charged collisional quenchers. The difference in accessibility between G- and F-actin was greatest for I-, indicating that the environment of the etheno group is more positively charged in the polymerized form of actin. Based on calculations of the change in electric potential of the environment of the etheno group, specific polymerization-related movements of charged residues in the atomic structure of G-actin are suggested. The binding of S-1 to epsilon-ATP-G-actin increased the accessibility of the etheno group to I- even over that in Mg(2+)-polymerized actin. The quenching of the etheno group by nitromethane was, however, unaffected by the binding of S-1 to actin. Thus, the binding of S-1 induces conformational changes in the cleft region of actin that are different from those caused by Mg2+ polymerization of actin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
159.
Pyruvate oxidase from Lactobacillus plantarum is a homotetrameric flavoprotein with strong binding sites for FAD, TPP, and a divalent cation. Treatment with acid ammonium sulfate in the presence of 1.5 M KBr leads to the release of the cofactors, yielding the stable apoenzyme. In the present study, the effects of FAD, TPP, and Mn2+ on the structural properties of the apoenzyme and the reconstitution of the active holoenzyme from its constituents have been investigated. As shown by circular dichroism and fluorescence emission, as well as by Nile red binding, the secondary and tertiary structures of the apoenzyme and the holoenzyme do not exhibit marked differences. The quaternary structure is stabilized significantly in the presence of the cofactors. Size-exclusion high-performance liquid chromatography and analytical ultracentrifugation demonstrate that the holoenzyme retains its tetrameric state down to 20 micrograms/mL, whereas the apoenzyme shows stepwise tetramer-dimer-monomer dissociation, with the monomer as the major component, at a protein concentration of < 20 micrograms/mL. In the presence of divalent cations, the coenzymes FAD and TPP bind to the apoenzyme, forming the inactive binary FAD or TPP complexes. Both FAD and TPP affect the quaternary structure by shifting the equilibrium of association toward the dimer or tetramer. High FAD concentrations exert significant stabilization against urea and heat denaturation, whereas excess TPP has no effect. Reconstitution of the holoenzyme from its components yields full reactivation. The kinetic analysis reveals a compulsory sequential mechanism of cofactor binding and quaternary structure formation, with TPP binding as the first step. The binary TPP complex (in the presence of 1 mM Mn2+/TPP) is characterized by a dimer-tetramer equilibrium transition with an association constant of Ka = 2 x 10(7) M-1. The apoenzyme TPP complex dimer associates with the tetrameric holoenzyme in the presence of 10 microM FAD. This association step obeys second-order kinetics with an association rate constant k = 7.4 x 10(3) M-1 s-1 at 20 degrees C. FAD binding to the tetrameric binary TPP complex is too fast to be resolved by manual mixing.  相似文献   
160.
Point mutations in the gene of pyruvate oxidase from Lactobacillus plantarum, with proline residue 178 changed to serine, serine 188 to asparagine, and alanine 458 to valine, as well as a combination of the three single point mutations, lead to a significant functional stabilization of the protein. The enzyme is a tetrameric flavoprotein with tightly bound cofactors, FAD, TPP, and divalent metal ions. Thus, stabilization may be achieved either at the level of tertiary or quaternary interactions, or by enhanced cofactor binding. In order to discriminate between these alternatives, unfolding, dissociation, and cofactor binding of the mutant proteins were analyzed. The point mutations do not affect the secondary and tertiary structure, as determined by circular dichroism and protein fluorescence. Similarly, the amino acid substitutions neither modulate the enzymatic properties of the mutant proteins nor do they stabilize the structural stability of the apoenzymes. This holds true for both the local and the global structure with unfolding transitions around 2.5 M and 5 M urea, respectively. On the other hand, deactivation of the holoenzyme (by urea or temperature) is significantly decreased. The most important stabilizing effect is caused by the Ala-Val exchange in the C-terminal domain of the molecule. Its contribution is close to the value observed for the triple mutant, which exhibits maximum stability, with a shift in the thermal transition of ca. 10 degrees C. The effects of the point mutations on FAD binding and subunit association are interconnected. Because FAD binding is linked to oligomerization, the stability of the mutant apoenzyme-FAD complexes is increased. Accordingly, mutants with maximum apparent FAD binding exhibit maximum stability. Analysis of the quaternary structure of the mutant enzymes in the absence and in the presence of coenzymes gives clear evidence that both improved ligand binding and subunit interactions contribute to the observed thermal stabilization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号