首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1858篇
  免费   82篇
  国内免费   36篇
  2024年   4篇
  2023年   26篇
  2022年   43篇
  2021年   45篇
  2020年   37篇
  2019年   35篇
  2018年   39篇
  2017年   28篇
  2016年   28篇
  2015年   38篇
  2014年   93篇
  2013年   82篇
  2012年   45篇
  2011年   58篇
  2010年   77篇
  2009年   96篇
  2008年   71篇
  2007年   101篇
  2006年   77篇
  2005年   70篇
  2004年   60篇
  2003年   55篇
  2002年   58篇
  2001年   48篇
  2000年   42篇
  1999年   25篇
  1998年   33篇
  1997年   35篇
  1996年   12篇
  1995年   32篇
  1994年   25篇
  1993年   17篇
  1992年   30篇
  1991年   30篇
  1990年   20篇
  1989年   25篇
  1988年   31篇
  1987年   20篇
  1986年   9篇
  1985年   19篇
  1984年   45篇
  1983年   52篇
  1982年   41篇
  1981年   41篇
  1980年   29篇
  1979年   28篇
  1978年   5篇
  1977年   5篇
  1975年   3篇
  1974年   4篇
排序方式: 共有1976条查询结果,搜索用时 15 毫秒
11.
To ascertain the roles of the membrane proteins in cation/sarcolemmal membrane binding, isolated rat cardiac sarcolemmal vesicles were extensively treated with Protease (S. aureus strain V.8). SDS-gel electrophoresis, protein and phosphate analysis confirmed that at least 20–22% of the protein, but none of the phospholipid, was solubilized by this procedure, and that the remaining membrane proteins were extensively hydrolyzed into small fragments. The cation binding properties of the treated vesicles were then examined by analyzing their aggregation behavior. The results demonstrate that this procedure had no effect on the selectivity series for di- and trivalent cation binding, or the divalent cation-induced aggregation behavior of the sarcolemmal vesicles at different pHs, indicating that proteins are probably not involved in these interactions and cannot be the low affinity cation binding sites previously observed [21, 22]. It did, however, change the pH at which protons induced sarcolemmal vesicle aggregation, suggesting a possible role for proteins in these processes. Protease treatment also modified the effects of fluorescamine labelling on divalent cation-induced vesicle aggregation, indicating that the NH, groups being labelled with fluorescamine are located on the sarcolemmal proteins. Together, these results support the hypothesis that di- and trivalent cation binding to the sarcolemmal membrane is largely determined by lipid/lipid and/or lipid/carbohydrate interactions within the plane of the sarcolemmal membrane, and that membrane proteins may exert an influence on these interactions, but only under very specialized conditions.Abbreviations MES 2-(N-morpholino)ethanesulfonic acid - MOPS 3-(N-morpholino) propanesulfonic acid - HEPES N-2-Hydroxyethylpiperizine-N-2- ethanesulfonic acid - CHES 2(N-Cyclohexylamino) ethanesulfonic acid - DTT DL-Dithiothreitol - PMSF Phenylmethyl-sulfonyl fluoride  相似文献   
12.
Summary This study demonstrates that endocytosis in the oocyte of Drosophila melanogaster is reversibly blocked at the stage of pit formation by the temperature-sensitive, single-gene mutant, shibire ts1. Uptake of horseradish peroxidase conjugated with wheat-germ agglutinin was observed to be normal in mutant oocytes at 19°C, but was blocked at 29°C. After 10 min at 29°C, there was a build-up of coated pits along invaginations of the plasma membrane. Also, the endosomal compartment consisting of tubules, bulbs, and small yolk spheres, disappeared. Lowering the temperature to 19°C after 10 min at 29°C released a synchronized wave of endocytosis into a cytoplasm cleared of uptake-related organelles. By observing this synchronized wave after exposure to 19°C for varying durations, we determined that endocytosis proceeds as follows: coated pits/vesiclestubulessmall yolk spheresmature yolk spheres. The observations suggest that these organelles transform one into another within this sequence.  相似文献   
13.
Plant coated vesicles   总被引:2,自引:1,他引:1  
Abstract. Coated vesicles are organelles frequently encountered in many plant cell types often in association with the plasma membrane, Golgi apparatus, partially coated reticulum and multivesicular bodies. They are readily identified by a characteristic cage or basket composed of interlocking triskelions of the protein clathrin which are bound to the surface of the vesicle membrane. Although their transport function has been well studied and characterized in mammalian systems, the possible importance of coated vesicles as transport organelles in plant cells is only just beginning to be explored. In this review, the authors describe the structure of higher plant coated vesicles and discuss their possible involvement in the endocytosis of marcromolecules, in exocytosis and in the intracellular transport of material between cytoplasmic compartments. Their possible role in maintaining the macromolecular composition of the plasma membrane whilst allowing recycling of excess lipid bilayer and their potential application as vehicles for the introduction of foreign macromolecules into plant cells are discussed.  相似文献   
14.
Tonoplast vesicles prepared from immature sugarcane ( Saccharum spp., hybrid cv. H65–7052) tissue and purified on a discontinuous dextran gradient take up sucrose. Uptake was stimulated by MgATP. Evidence that the mechanism is linked to proton transport is derived from "pH jump'data and from inhibition of ATP-stimulated sucrose transport by the protonophore carbonyl cyanide m -chlorophenylhydrazone (CCCP) and by the proton-channel blocker of proton-linked ATPases. N. N '-dicyclo-hexylcarbodiimide (DCCD). A saturable phase of sucrose uptake was found at low substrate concentrations, and a linear phase characterized uptake at higher concentrations. Uptake was specific for sucrose, as demonstrated by competition experiments with various sugars. Sucrose uptake by the vesicle fraction was inhibited by KNO3, protonophores and protein modifying reagents, whereas sodium orthovanadate had no effect. Overall, the evidence suggests an ATP-hydrolysis-dependent tonoplasl antiport for sucrose transport, although a more direct influence of ATP on conformational changes in relevant tonoplast proteins cannot be ruled out.  相似文献   
15.
16.
The tonoplast amino-acid transporter of barley (Hordeum vulgare L.) mesophyll cells was functionally reconstituted by incorporating solubilized tonoplast membranes, vacuoplast membranes or tonoplast-enriched microsomal vesicles into phosphatidylcholine liposomes. (i) Time-, concentration- and ATP-dependence of amino-acid uptake were similar to results with isolated vacuoles. Although the orientation of incorporation could not be controlled, the results indicate that the transporter functions as a uniport system which allows regulated equilibration by diffusion between the cytosolic and vacuolar amino-acid pools. (ii) The ATP-modulated amino-acid carrier was also successfully reconstituted from barley epidermal protoplasts and Valerianella or Tulipa vacuoplasts, indicating its general occurrence. (iii) Fractionation of solubilized tonoplasts by size-exclusion chromatography followed by reconstitution of the fractions for glutamine transport gave two activity peaks: the first eluted in the region of high-molecular-mass vesicles and the second at a size of 300 kDa for the Triton-protein micelle.Abbreviation SDS-PAGE sodium dodecyl sulfate-polyacryl-amide gel electrophoresis This work was part of our research efforts within the Sonderforschungsbereich 176 of the University. We gratefully acknowledge experimental support by Marion Betz and valuable discussions with Professors U. Heber and U.-I. Flügge and Dr. Armin Gross (University of Würzburg) and Dr. E. Martinoia (ETH, Zürich, Switzerland).  相似文献   
17.
Identification of an insertion sequence, IS1081, in Mycobacterium bovis   总被引:12,自引:0,他引:12  
Abstract: An insertion sequence, IS1081, in the genome of Mycobacterium bovis has been identified and sequenced. It is 1324 bp long with 15 bp inverted repeat ends and contains a large ORF. There are six copies of IS1081 in the genome of M. bovis and the element is also present in Mycobacterium tuberculosis . IS1081 is not closely related to other DNA elements described in actinomycetes but its putative transposase bears some resemblance to that of IS256 from Staphylococcus aureus . IS1081 may be useful for genetic manipulations and for developing a diagnostic test for bovine tuberculosis based on the polymerase chain reaction.  相似文献   
18.
The interaction of saponins with phospholipid vesicles was investigated by means of liposomal agglutination or a precipitation assay. Ginsenoside-Rc, which has an α-l-arabinofuranose residue at the non-reducing terminus, exhibited remarkable agglutinability toward egg yolk phosphatidylcholine vesicles, while other saponins lacking this characteristic sugar residue showed less or no agglutinability. The molar ratio of ginsenoside-Rc to egg phosphatidylcholine in the aggregates was estimated to be 0.4–0.5 by a precipitation assay using 14C-labeled egg phosphatidylcholine vesicles. The agglutination was inhibited by p-nitrophenyl α-l-arabinofuranoside but not by p-nitrophenyl β-d-glucopyranoside or arabinogalactan. The results indicated that the α-l-arabinofuranose residue in ginsenoside-Rc should be important for the expression of the agglutinability. The agglutinability of ginsenoside-Rc toward lipid vesicles depended on both the polar head groups and fatty acyl chains of phospholipids. Egg yolk phosphatidylcholine vesicles were strongly agglutinated by ginsenoside-Rc, although sphingomyelin, phosphatidylethanolamine, phosphatidic acid and phosphatidylserine were less agglutinated. The agglutinability of ginsenoside-Rc was effective for phosphatidylcholines with short or unsaturated fatty acyl chains. The results suggested that the interaction of ginsenoside-Rc with phospholipid membranes should be affected not only by the chemical structure of the phospholipid but also by the membrane fluidity.  相似文献   
19.
C. Niemietz  J. Willenbrink 《Planta》1985,166(4):545-549
The pH gradient and the electric potential across the tonoplast in mechanically isolated beetroot vacuoles has been studied by following the uptake of [14C]methylamine and [14C]triphenyl-methylphosphoniumchloride. In response to Mg-ATP, the vacuolar interior is acidified by 0.8 units. This strong acidification is accompanied by a slight hyperpolarization of the membrane potential, which is probably caused by a proton diffusion potential. In preparations where only a small acidification (0.4 units) occurred, the membrane potential was depolarized by the addition of Mg-ATP. Different monovalent cations and anions were tested concerning their effect on the pH gradient and ATPase activity in proton-conducting tonoplasts. Chloride stimulation and NO 3 - inhibition were clearly present. The observed decline of the pH gradient upon the addition of Na+ salts is probably caused by an Na+/H+ antiport system.Abbreviations and symbol CCCP carbonylcyanide-m-chlorophenylhydrazone - Mes 2(N-morpholino)ethanesulfonic acid - TPMP+ triphenylmethylphosphoniumchloride - Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol - membrane potential Dedicated to Professor A. Betz on the occasion of his 65th birthday  相似文献   
20.
Summary Effects of osmotic conditions on secretion of milk serum were examined using standard transmission electron microscopy. Rat mammary glands were infused with hyper-, iso-, and hypo-osmotic solutions. The intramammary infusion of these agents elicited distinct and repeatable morphological responses from lactating epithelial cells. The response to hyperosmolarity was an increase in compound exocytotic figures and an increase in secretory vesicle size (¯x=1.65 m in diameter). Glands infused with hypo-osmolar solutions exhibited the opposite response; reduction in compound exocytotic figures and reduced vesicle size (¯x=0.34 n in diameter). The response to iso-osmotic solutions was indistinguishable from untreated control tissue. The ratio of vesicular projections to depressions (vesicle membrane/plasma membrane interactions) could be experimentally altered through the intramammary infusion of solutions with different osmotic potentials. These observations support the suggestion that osmotic conditions may influence exocytosis of milk serum.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号