首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   175篇
  免费   31篇
  国内免费   4篇
  210篇
  2024年   1篇
  2023年   1篇
  2022年   4篇
  2021年   6篇
  2020年   9篇
  2019年   17篇
  2018年   8篇
  2017年   9篇
  2016年   12篇
  2015年   9篇
  2014年   14篇
  2013年   31篇
  2012年   8篇
  2011年   14篇
  2010年   7篇
  2009年   4篇
  2008年   12篇
  2007年   3篇
  2006年   6篇
  2005年   4篇
  2004年   3篇
  2003年   5篇
  2002年   2篇
  2001年   1篇
  1999年   1篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1986年   1篇
  1984年   3篇
  1982年   2篇
  1979年   1篇
排序方式: 共有210条查询结果,搜索用时 0 毫秒
11.
Titanium dioxide (TiO2) is a viable marker in digestibility studies using different animal species. The photometrical analysis is based on an intense orange colour following the addition of hydrogen peroxide to an acid solution. The measurement using inductively coupled plasma optical emission spectrometry (ICP-OES) is a method for analysing more than one element from the same sample preparation. The present study was conducted to investigate whether an established ICP-OES element analysis following acid-based hydrolysis is appropriate for titanium analysis. Defined amounts of TiO2 were added to samples obtained in studies with cows, pigs and turkeys and recoveries were determined. It was shown that supplemented TiO2 can be determined in samples of feeds, faeces or excreta, and digesta using a method based on photometric or ICP-OES measurement. The differences between the true and measured titanium concentrations indicate that using the ICP-OES method leads to a higher accuracy of determination.  相似文献   
12.
13.
14.
Degradation products of titanium implants include free ions, organo-metallic complexes, and particles, ranging from nano to macro sizes. The biological effects, especially of nanoparticles, is yet unknown. The main objective of this study was to develop Ti-protein antigens in physiological solutions that can be used in testing of cellular responses. For this purpose, 0.1% TiO2 nanoparticles less than 100 nm were mixed with human serum albumin (HSA), 0.1% and 1%, in cell culture medium (DMEM, pH 7.2). The Ti concentrations in the resulting solutions were analyzed by inductively coupled plasma mass spectrometry. The stability of the nanoparticles in suspension was analyzed by UV-vis spectrophotometer and Dynamic Light Scattering. The concentration of Ti in suspension was dependent on the presence and concentration of HSA. Albumin prevented high aggregation rate of TiO2 nanoparticles in cell culture medium. It is shown that nano TiO2-protein stable aggregates can be produced under physiological conditions at high concentrations, and are candidates for use in cellular tests.  相似文献   
15.
Adsorption plays an important role in the removal of pollutants such as fluoride from aqueous solutions. With the rapid development of environmental technology, TiO2 particle has become promising material to adsorb fluoride ion because of its low cost, non-toxic, good chemical stability, and good sorption ability. This work used sol-gel and hydrothermal synthesis methods to prepare TiO2 particles and load them onto SiO2 particles. The physicochemical properties such as heat stability, particle size, and surface area of the resulting TiO2 adsorbents were characterized with various analytical methods. In addition, their adsorption abilities to fluoride were determined under various conditions including different initial fluoride concentration, pH and coexisting ions. The maximum adsorption capacity of the TiO2 adsorbents can reach up to 94.3 mg/g. The adsorption isotherms of fluoride onto the TiO2 adsorbents can be closely described by the Langmuir model, suggesting the monolayer adsorption process.  相似文献   
16.
17.
TiO2 hollow nanowires (HNWs) and nanoparticles (NPs) constitute promising architectures for QDs sensitized photoanodes for H2 generation. We sensitize these structures with CdS/CdSe quantum dots by two different methods (chemical bath deposition, CBD and succesive ionic layer adsorption and reaction, SILAR) and evaluate the performance of these photoelectrodes. Remarkable photocurrents of 4 mA·cm and 8 mA·cm?2 and hydrogen generation rates of 40 ml·cm?2·day?1 and 80 ml·cm?2·day?1 have been obtained in a three electrode configuration with sacrificial hole scavengers (Na2S and Na2SO3), for HNWs and NPs respectively, which is confirmed through gas analysis. More importantly, autonomous generation of H2 (20 ml·cm?2·day?1 corresponding to 2 mA·cm?2 photocurrent) is obtained in a two electrode configuration at short circuit under 100 mW·cm?2 illumination, clearly showing that these photoanodes can produce hydrogen without the assistance of any external bias. To the best of the authors' knowledge, this is the highest unbiased solar H2 generation rate reported for these of QDs based heterostructures. Impedance spectroscopy measurements show similar electron density of trap states below the TiO2 conduction band while the recombination resistance was higher for HNWs, consistently with the much lower surface area compared to NPs. However, the conductivity of both structures is similar, in spite of the one dimensional character of HNWs, which leaves some room for improvement of these nanowired structures. The effect of the QDs deposition method is also evaluated. Both structures show remarkable stability without any appreciable photocurrent loss after 0.5 hour of operation. The findings of this study constitute a relevant step towards the feasibility of hydrogen generation with wide bandgap semiconductors/quantum dots based heterostructures.  相似文献   
18.
Titanium (IV) and vanadium (V) complexes are highly potent anticancer agents. A challenge in their synthesis refers to their hydrolytic instability; therefore their preparation should be conducted under an inert atmosphere. Evaluation of the anticancer activity of these complexes can be achieved by the MTT assay.The MTT assay is a colorimetric viability assay based on enzymatic reduction of the MTT molecule to formazan when it is exposed to viable cells. The outcome of the reduction is a color change of the MTT molecule. Absorbance measurements relative to a control determine the percentage of remaining viable cancer cells following their treatment with varying concentrations of a tested compound, which is translated to the compound anticancer activity and its IC50 values. The MTT assay is widely common in cytotoxicity studies due to its accuracy, rapidity, and relative simplicity.Herein we present a detailed protocol for the synthesis of air sensitive metal based drugs and cell viability measurements, including preparation of the cell plates, incubation of the compounds with the cells, viability measurements using the MTT assay, and determination of IC50 values.  相似文献   
19.
Topographical modifications of titanium (Ti) at the nanoscale level generate surfaces that regulate several signaling pathways and cellular functions, which may affect the process of osseointegration. Here, we investigated the participation of integrin αV in the osteogenic capacity of Ti with nanotopography. Machined titanium discs (untreated) were submitted to treatment with H2SO4/H2O2 to produce the nanotopography (nanostructured). First, the greater osteogenic capacity of the nanotopography that increased osteoblast differentiation of mesenchymal stem cells compared with untreated topography was shown. Also, the nanostructured surface increased (regulation ≥ 1.9-fold) the gene expression of 6 integrins from a custom array plate utilized to evaluate the gene expression of 84 genes correlated with cell adhesion signaling pathway, including integrin αV, which is involved in osteoblast differentiation. By silencing integrin αV in MC3T3-E1 cells cultured on nanotopography, the impairment of osteoblast differentiation induced by this surface was observed. In conclusion, it was shown that nanotopography regulates the expression of several components of the cell adhesion signaling pathway and its higher osteogenic potential is, at least in part, due to its ability to upregulate the expression of integrin αV. Together with previous data that showed the participation of integrins α1, β1, and β3 in the nanotopography osseoinduction activity, we have uncovered the pivotal role of this family of membrane receptors in the osteogenic potential of this surface.  相似文献   
20.
A detailed investigation of the effect of hole transport material (HTM) pore filling on the photovoltaic performance of solid‐state dye‐sensitized solar cells (ss‐DSCs) and the specific mechanisms involved is reported. It is demonstrated that the efficiency and photovoltaic characteristics of ss‐DSCs improve with the pore filling fraction (PFF) of the HTM, 2,2’,7,7’‐tetrakis‐(N, N ‐di‐ p ‐methoxyphenylamine)9,9’‐spirobifluorene(spiro‐OMeTAD). The mechanisms through which the improvement of photovoltaic characteristics takes place were studied with transient absorption spectroscopy and transient photovoltage/photocurrent measurements. It is shown that as the spiro‐OMeTAD PFF is increased from 26% to 65%, there is a higher hole injection efficiency from dye cations to spiro‐OMeTAD because more dye molecules are covered with spiro‐OMeTAD, an order‐of‐magnitude slower recombination rate because holes can diffuse further away from the dye/HTM interface, and a 50% higher ambipolar diffusion coefficient due to an improved percolation network. Device simulations predict that if 100% PFF could be achieved for thicker devices, the efficiency of ss‐DSCs using a conventional ruthenium‐dye would increase by 25% beyond its current value.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号