首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
  2019年   1篇
  2015年   1篇
  2010年   1篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1993年   1篇
  1989年   2篇
  1988年   2篇
  1983年   1篇
  1982年   1篇
排序方式: 共有17条查询结果,搜索用时 78 毫秒
11.
Inter-specific relationships between mean seed weight, coleoptile + mesocotyl (sub-coleoptile internode) length and width, shoot strength and emergence from different sowing depths were examined for timothy (Phleum pratense L., mean seed weight 0.33-0.48 mg depending on seed line), cocksfoot (Dactylis glomerata L., 0.65-0.78 mg), perennial ryegrass (Lolium perenne L., 1.71-2.19 mg), tall fescue (Festuca arundinucea Schreb., 1.73–2.60 mg), annual ryegrass (Lolium multiflorum Lam., 5.10-5.20 mg) and prairie grass (Bromus willdenowü Kunth., 10.5–12.2 mg). Across species at 10,30 and 60 mm sowing depths in the field and 10, 15 and 30 mm sowing depths under controlled environment conditions, there was a significant (P < 0.05) positive correlation between emergence % and mean seed weight. Across species at 10–30 mm sowing depth under controlled environment conditions, emergence % was not significantly correlated with coleoptile + mesocotyl length but there were significant positive correlations between emergence % and coleoptile and mesocotyl width: shoot strength increased with increased coleoptile width across species. For seed lines of timothy of different mean seed weight (0.21-0.81 mg), emergence %, coleoptile + mesocotyl length and coleoptile and mesocotyl width increased with increased seed weight at 10 and 15 mm sowing depth. Shoot strength increased with increased coleoptile width for timothy. For emerged and non-emerged cocksfoot and timothy seedlings regardless of seed weight, mean coleoptile + mesocotyl length was > 10 mm at 10 mm sowing depth. It is concluded that at 10–30 mm sowing depth, increased emergence % with increased seed weight across species is not due to increased coleoptile + mesocotyl length. It is proposed that increased emergence % with increased seed weight across species at 10–30 mm sowing depths and across seed lines of timothy at 10 mm sowing depth is primarily due to increased coleoptile and mesocotyl width resulting in increased shoot strength and hence an increased ability to penetrate the substrate.  相似文献   
12.
13.
Nitrogen fixation (NF) by alfalfa and nitrogen transfer (NT) from alfalfa to associated timothy was studied under different environmental conditions in controlled growth chambers, using the15N dilution technique. Evidence was obtained of NT from alfalfa to the associated timothy. Conditions that favored NF by alfalfa resulted in an increase in its NT. Of 3 different temperature regimes (25/20, 16/14, and 12/9°C day/night), 16–25/14–20°C was the best range for NF by alfalfa and resulted in the greatest NT. High light intensity (550 uE.m−2.sec−1) and long days (16–20 h) also caused increased NF by alfalfa and benefitting timothy more than in a regime of low light intensity (by shading 50% or 75%) or short days (12/12 or 16/8 h day/night). When the inoculated (Rhizobium meliloti) root systems of plants were kept free from other microorganisms (axenic condition) to minimize possible decomposition of dead tissues, lower NT from alfalfa was observed, especially at later cuts, compared to non-axenic plants. This suggests that both direct excretion and decomposition of dead alfalfa tissues are sources of N benefit from alfalfa to associated timothy. Contribution no 1065 of the Plant Research Centre.  相似文献   
14.
15.
Four different methods: direct15N2 exposure, legume leaf labeled with15N,15N dilution and total N balance were applied to assess the nitrogen transfer (NT) from alfalfa to companion timothy. Evidence of NT was obtained in all cases, which represents about 3% of total N fixed by alfalfa or 10% of N content in timothy at the first cycle of growth. All the three15N methods gave identical results, while the conventional calculation of NT from the difference of N content in timothy from mixture and monoculture resulted in an over-estimation. The advantages and disadvantages of each method as applied to field conditions are discussed.Contribution No 1158 from the Plant Research Centre.  相似文献   
16.
The developmental reaction norm (DRN) represents the set of ontogenetic trajectories that can be produced by a genotype exposed to different environmental conditions. Genetic variation in the DRN for growth traits and in the patterns of biomass allocation is critical to phenotypic evolution in heterogeneous environments. The DRN and patterns of biomass allocation were investigated in 11 clones of the caespitose, corm-forming, perennial grass Phleum pratense in relation to competitive stress imparted by Lolium perenne in a 16 week glasshouse experiment. A separate experiment assessed the ability of basal buds flanking a corm to sprout and the relationship of corm mass to sprout mass for the same clones. Corm fresh mass varied among clones and was significantly correlated with the dry mass of the tillers that sprouted from basal buds. In the competition experiment, clones in competitive environments varied significantly from those in non-competetive environments in terms of their DRNs for number of tillers and shoot dry mass. Thus, selection of DRNs would favour different genotypes in the two environments and at different times. Significant negative genetic correlations were detected for tiller number and mean tiller mass in the noncompetitive, but not the competitive, environment. Biomass allocation to stem bases was significantly greater for clones under competitive stress. Allocation to storage tissues such as corms may be adaptive if it enhances persistence in the competitive field environments typically occupied by caespitose grasses. Root and shoot allocation showed a significant clone by competition interaction. For P. pratense, genotypic variation in growth trajectories plays an important role in determining variation in individual performance, a condition necessary for the continued evolution of the DRN.  相似文献   
17.
This research focuses on investigating the use of common biofuel grasses to assess their potential as agents of long-term remediation of contaminated soils using lead as a model heavy metal ion. We present evidence demonstrating that switch grass and Timothy grass may be potentially useful for long-term phytoremediation of heavy metal contaminated soils and describe novel techniques to track and remove contaminants from inception to useful product. Enzymatic digestion and thermochemical approaches are being used to convert this lignocellulosic feedstock into useful product (sugars, ethanol, biocrude oil + biochar). Preliminary studies on enzymatic hydrolysis and fast pyrolysis of the Switchgrass materials that were grown in heavy metal contaminated soil and non-contaminated soils show that the presence of lead in the Switchgrass material feedstock does not adversely affect the outcomes of the conversion processes. These results indicate that the modest levels of contaminant uptake allow these grass species to serve as phytoremediation agents as well as feedstocks for biofuel production in areas degraded by industrial pollution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号