首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1051篇
  免费   30篇
  国内免费   16篇
  2022年   8篇
  2021年   7篇
  2020年   7篇
  2019年   14篇
  2018年   14篇
  2016年   10篇
  2015年   12篇
  2014年   45篇
  2013年   104篇
  2012年   30篇
  2011年   44篇
  2010年   29篇
  2009年   43篇
  2008年   47篇
  2007年   47篇
  2006年   38篇
  2005年   35篇
  2004年   22篇
  2003年   25篇
  2002年   18篇
  2001年   12篇
  2000年   11篇
  1999年   15篇
  1998年   16篇
  1997年   6篇
  1996年   15篇
  1995年   14篇
  1994年   13篇
  1993年   15篇
  1992年   11篇
  1991年   12篇
  1990年   12篇
  1989年   17篇
  1988年   12篇
  1987年   12篇
  1986年   9篇
  1985年   20篇
  1984年   26篇
  1983年   27篇
  1982年   18篇
  1981年   20篇
  1980年   28篇
  1979年   21篇
  1978年   16篇
  1977年   18篇
  1976年   17篇
  1975年   16篇
  1974年   28篇
  1973年   20篇
  1972年   6篇
排序方式: 共有1097条查询结果,搜索用时 203 毫秒
91.
Kim M  Kwon T  Lee HJ  Kim KH  Chung DK  Ji GE  Byeon ES  Lee JH 《Biotechnology letters》2003,25(15):1211-1217
A DNA fragment, which complemented the growth of E. coli both on M9 medium containing raffinose and on LB medium containing ampicillin, IPTG and 5-bromo-4-chloro-3-indoxyl--d-galactoside, was isolated from the genomic library of Bifidobacterium longum SJ32, which had been digested with EcoRI. In the cloned DNA fragment, a gene encoding a sucrose phosphorylase (splP) and a partially cloned putative sucrose regulator gene (splR) were identified using the deletion analysis and sequence analysis. A 56 kDa protein was synthesized in E. coli and partially purified by DEAE-ion exchange chromatography. The partially purified enzyme did not react with melibiose, melezitoze and raffinose but did with sucrose. It had transglucosylation activity in addition to hydrolytic activity.  相似文献   
92.
Evidence is presented that, as in animal and human cells, plant cells can release a newly-synthesized DNA which can freely circulate in the plants. This DNA enters cells and their nuclei where it may be integrated and be expressed so acting, apparently, as a messenger-DNA.  相似文献   
93.
We describe a new enzymatic reaction method for the preparation of the radioisotope-labeled cytokinins isopentenyladenine (iP), trans-zeatin (tZ), and their ribosides. The method is based on the three enzyme activities of an adenylate isopentenyltransferase (IPT; EC 2.5.1.27) from Arabidopsis thaliana, an alkaline phosphatase (EC 3.1.3.1) from calf intestine, and a purine-nucleoside phosphorylase (EC 2.4.2.1) from Escherichia coli. The A. thaliana IPT, AtIPT7, utilized both dimethylallyldiphosphate and 4-hydroxy-3-methyl-2-(E)-butenyl diphosphate as isoprenoid donors. The dual specificity of the substrates enabled us to produce iP-type and tZ-type cytokinins separately in the same system simply by switching the substrates. Our method affords a much higher yield of the labeled products than the chemical reaction methods previously used. These labeled compounds will be useful tools for cytokinin research, such as receptor–ligand assays and cell metabolism studies.  相似文献   
94.
A search for the occurrence of the rare pi-helix was performed with Iditis from the Oxford Molecular Group upon the Protein Data Bank. In 8 of the 10 confirmed crystal structures that harbor the pi-helix, its unique conformation has been linked directly to the formation or stabilization of a specific binding site within the protein. In the discussion to follow, the role for each of these eight pi-helices will be addressed in regard to protein function. It is clear upon closer examination that the conformation of the pi-helix has evolved to provide unique structural features within a variety of proteins.  相似文献   
95.
The rate and extent of hydrogen/deuterium (H/D) exchange into purine nucleoside phosphorylase (PNP) was monitored by electrospray ionization mass spectrometry (ESI-MS) to probe protein conformational and dynamic changes induced by a substrate analogue, products, and a transition state analogue. The genetic deficiency of PNP in humans is associated with severe T-cell immunodeficiency, while B-cell immunity remains functional. Inhibitors of PNP have been proposed for treatment of T-cell leukemia, to suppress the graft-vs.-host response, or to counter type IV autoimmune diseases without destroying humoral immunity. Calf spleen PNP is a homotrimer of polypeptide chains with 284 amino residues, molecular weight 31,541. Immucillin-H inhibits PNP with a Kd of 23 pM when only one of the three catalytic sites is occupied. Deuterium exchange occurs at 167 slow-exchange sites in 2 h when no catalytic site ligands are present. The substrate analogue and product prevented H/D exchange at 10 of the sites. Immucillin-H protected 32 protons from exchange at full saturation. When one of the three subunits of the homotrimer is filled with immucillin-H, and 27 protons are protected from exchange in all three subunits. Deuterium incorporation in peptides from residues 132-152 decreased in all complexes of PNP. The rate and/or extent of deuterium incorporation in peptides from residues 29-49, 50-70, 81-98, and 112-124 decreased only in the complex with the transition state analogue. The peptide-specific H/D exchange demonstrates that (1) the enzyme is most compact in the complex with immucillin-H, and (2) filling a single catalytic site of the trimer reduces H/D exchange in the same peptides in adjacent subunits. The peptides most highly influenced by the inhibitor surround the catalytic site, providing evidence for reduced protein dynamic motion caused by the transition state analogue.  相似文献   
96.
97.
Holden CP  Storey KB 《Cryobiology》2000,40(4):323-331
Freeze tolerance by various amphibians includes cryoprotectant production in the form of glucose. Activation of the catalytic subunit of liver cAMP-dependent protein kinase (PKAc) facilitates activation of glycogenolysis, a critical biochemical process necessary for production of glucose. Here, we purified PKAc from Rana sylvatica liver to determine the extent to which cold temperature, which stimulates cryoprotectant production, affected PKAc activity and function. PKAc was purified to greater than 95% homogeneity, with a final specific activity of 71 nmol phosphate transferred/min/mg protein. The molecular weight of frog liver PKAc was 47.6 +/- 1.1 kDa and K(m) values for the phosphate acceptor kemptide and Mg-ATP were 9.0 +/- 0.1 and 51.8 +/- 1.0 microM at 22 degrees C, respectively. K(m) values for both substrates dropped significantly at 5 degrees C. The enzyme was sensitive to specific inhibitors of mammalian PKAc (PKA(i), H89) but was only moderately inhibited by high salt concentrations. Furthermore, salt inhibition was reduced at low temperature. The effect of temperature on enzyme activity indicated a conformational change in PKAc at 10 +/- 2 degrees C, with calculated activation energies of 51 +/- 4 kJ/mol at temperatures above 10 degrees C and 110 +/- 9 kJ/mol below 10 degrees C. PKAc in wood frog liver plays a crucial role in mediating the freeze-induced glycogenolysis that is responsible for the production of 200-300 mM levels of glucose as a cryoprotectant. Differential effects of low temperature on enzyme function, increased substrate affinity and reduced ion inhibition, appear to be central to this role.  相似文献   
98.
99.
Two nontypical nucleosides, 7-β-d-ribosyl-2,6-diamino-8-azapurine and 8-β-d-ribosyl-2,6-diamino-8-azapurine, have been found to exhibit moderately good, and selective, substrate properties toward calf and bacterial (Escherichia coli) forms of purine nucleoside phosphorylase (PNP). The former compound is effectively phosphorolysed by calf PNP and the latter by PNP from E. coli. Both compounds are fluorescent with λmax ∼ 425 to 430 nm, but the reaction product, 2,6-diamino-8-azapurine, emits in a different spectral region (λmax ∼ 363 nm) with nearly 40% yield, providing a strong fluorogenic effect at 350 to 360 nm.  相似文献   
100.
2,3-Dihydroxy-quinoxaline, a small molecule that promotes ATPase catalytic activity of Herpes Simplex Virus thymidine kinase (HSV-TK), was identified by virtual screening. This compound competitively inhibited HSV-TK catalyzed phosphorylation of acyclovir with Ki = 250 μM (95% CI: 106–405 μM) and dose-dependently increased the rate of the ATP hydrolysis with KM = 112 μM (95% CI: 28–195 μM). The kinetic scheme consistent with this experimental data is proposed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号