首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5708篇
  免费   712篇
  国内免费   400篇
  2024年   12篇
  2023年   119篇
  2022年   88篇
  2021年   154篇
  2020年   190篇
  2019年   233篇
  2018年   246篇
  2017年   259篇
  2016年   250篇
  2015年   251篇
  2014年   318篇
  2013年   433篇
  2012年   297篇
  2011年   342篇
  2010年   277篇
  2009年   320篇
  2008年   304篇
  2007年   337篇
  2006年   276篇
  2005年   246篇
  2004年   215篇
  2003年   193篇
  2002年   177篇
  2001年   107篇
  2000年   109篇
  1999年   115篇
  1998年   98篇
  1997年   71篇
  1996年   85篇
  1995年   66篇
  1994年   48篇
  1993年   74篇
  1992年   51篇
  1991年   34篇
  1990年   34篇
  1989年   30篇
  1988年   33篇
  1987年   35篇
  1986年   34篇
  1985年   39篇
  1984年   38篇
  1983年   27篇
  1982年   30篇
  1981年   15篇
  1980年   20篇
  1979年   16篇
  1978年   18篇
  1977年   14篇
  1976年   12篇
  1974年   8篇
排序方式: 共有6820条查询结果,搜索用时 312 毫秒
991.
Removal of Pb(II) from an aqueous environment using biosorbents is a cost-effective and environmentally benign method. The biosorption process, however, is little understood for biosorbents prepared from plant materials. In this study, the biosorption process was investigated by evaluating four adsorption models. A fixed-bed column was prepared using a biosorbent prepared from the aquatic plant Hydrilla verticillata. The effect of bed height and flow rate on the biosorption process was investigated. The objective of the study was to determine the ability of H. verticillata to biosorb Pb(II) from an aqueous environment and to understand the process, through modeling, to provide a basis to develop a practical biosorbent column. Experimental breakthrough curves for biosorption of 50 mg L?1 aqueous Pb(II) using a fixed-bed column with 1.00 cm inner diameter were fitted to the Thomas, Adams-Bohart, Belter, and bed depth service time (BDST) models to investigate the behavior of each model according to the adsorption system and thus understand the adsorption mechanism. Model parameters were evaluated using linear and nonlinear regression methods. The biosorbent removed 65% (82.39 mg g?1 of biosorbent) of Pb(II) from an aqueous solution of Pb(NO3)2 at a flow rate of 5.0 ml min?1 in a 10 cm column. Na2CO3 was used to recover the adsorbed Pb(II) ions as PbCO3 from the biosorbent. The Pb(II) was completely desorbed at a bed height of 10.0 cm and a flow rate of 5.0 ml min?1. Fourier transform infrared (FT-IR) analysis of the native biosorbent and Pb(II)-loaded biosorbent indicated that the hydroxyl groups and carboxylic acid groups were involved in the metal bonding process. The FT-IR spectrum of Pb(II)-desorbed biosorbent showed an intermediate peak shift, indicating that Pb(II) ions were replaced by Na+ ions through an ion-exchange process. Of the four models tested, the Thomas and BDST models showed good agreement with experimental data. The calculated bed sorption capacity N0 and rate constant ka were 31.7 g L?1 and 13.6 × 10?4 L mg?1 min?1 for the Ct/C0 value of 0.02. The BDST model can be used to estimate the column parameters to design a large-scale column.  相似文献   
992.
A three-phase bed bioreactor including a mix of immobilized microbes was used to degrade isopropanol (IPA). The immobilization method was studied and cells immobilized with calcium alginate, polyvinyl alcohol, activated carbon, and SiO2 were demonstrated to be the best immobilization method for the degradation of 90% of 2?g/L IPA in just 4 days, 1 day earlier than with free cells. Acetone was monitored as an indicator of microbial IPA utilization as the major intermediate of aerobic IPA biodegradation. The bioreactor was operated at hydraulic retention time (HRT) values of 32, 24, 16, 12, and 10?hr, which correspond to membrane fluxes of 0.03, 0.04, 0.06, 0.08, and 0.10?L/m2/hr, respectively. The chemical oxygen demand (COD) removal efficiencies were maintained at 98.0, 97.8, 89.1, 80.6, and 71.1% at a HRT of 32, 24, 16, 12, and 10?hr, respectively, while the IPA degradations were 98.6, 98.3, 90.3, 81.6, and 73.3%, respectively. With a comprehensive consideration of COD removal and economy, the optimal HRT was 24?hr. The results demonstrate the potential of immobilized mixed bacterial consortium in a three-phase fluidized bed reactor system for the aerobic treatment of wastewater containing IPA.  相似文献   
993.
Forecasting impacts of future climate change is an important challenge to biologists, both for understanding the consequences of different emissions trajectories and for developing adaptation measures that will minimize biodiversity loss. Existing variation provides a window into the effects of climate on species and ecosystems, but in many places does not encompass the levels or timeframes of forcing expected under directional climatic change. Experiments help us to fill in these uncertainties, simulating directional shifts to examine outcomes of new levels and sustained changes in conditions. Here, we explore the translation between short‐term responses to climate variability and longer‐term trajectories that emerge under directional climatic change. In a decade‐long experiment, we compare effects of short‐term and long‐term forcings across three trophic levels in grassland plots subjected to natural and experimental variation in precipitation. For some biological responses (plant productivity), responses to long‐term extension of the rainy season were consistent with short‐term responses, while for others (plant species richness, abundance of invertebrate herbivores and predators), there was pronounced divergence of long‐term trajectories from short‐term responses. These differences between biological responses mean that sustained directional changes in climate can restructure ecological relationships characterizing a system. Importantly, a positive relationship between plant diversity and productivity turned negative under one scenario of climate change, with a similar change in the relationship between plant productivity and consumer biomass. Inferences from experiments such as this form an important part of wider efforts to understand the complexities of climate change responses.  相似文献   
994.
Projecting the fates of populations under climate change is one of global change biology's foremost challenges. Here, we seek to identify the contributions that temperature‐mediated local adaptation and plasticity make to spatial variation in nesting phenology, a phenotypic trait showing strong responses to warming. We apply a mixed modeling framework to a Britain‐wide spatiotemporal dataset comprising >100 000 records of first egg dates from four single‐brooded passerine bird species. The average temperature during a specific time period (sliding window) strongly predicts spatiotemporal variation in lay date. All four species exhibit phenological plasticity, advancing lay date by 2–5 days °C?1. The initiation of this sliding window is delayed further north, which may be a response to a photoperiod threshold. Using clinal trends in phenology and temperature, we are able to estimate the temperature sensitivity of selection on lay date (B), but our estimates are highly sensitive to the temporal position of the sliding window. If the sliding window is of fixed duration with a start date determined by photoperiod, we find B is tracked by phenotypic plasticity. If, instead, we allow the start and duration of the sliding window to change with latitude, we find plasticity does not track B, although in this case, at odds with theoretical expectations, our estimates of B differ across latitude vs. longitude. We argue that a model combining photoperiod and mean temperature is most consistent with current understanding of phenological cues in passerines, the results from which suggest that each species could respond to projected increases in spring temperatures through plasticity alone. However, our estimates of B require further validation.  相似文献   
995.
Due to the ephemeral nature of carcasses they grow on, necrophagous blowfly larvae should minimize the time spent on the cadaver. This could be achieved by moving to high‐temperature areas. On that basis, we theorized that larvae placed in a heterogeneous thermal environment would move to the higher temperature that speed up their development. This study was designed to (1) test the ability of necrophagous larvae to orientate in a heterogeneous thermal environment, and (2) compare the temperatures selected by the larvae of three common blowfly species: Lucilia sericata (Meigen), Calliphora vomitoria (L.) and Calliphora vicina (Robineau‐Desvoidy). For this purpose, we designed a setup we named Thermograde. It consists of a food‐supplied linear thermal gradient that allows larvae to move, feed, and grow in close‐to‐real conditions, and to choose to stay at a given temperature. For each species and replication, 80 young third instars were placed on the thermal gradient. The location of larvae was observed after 19 h, with fifteen replications per species. The larvae of each species formed aggregations that were always located at the same temperatures, which were highly species‐specific: 33.3 ± 1.52 °C for L. sericata, 29.6 ± 1.63 °C for C. vomitoria, and 22.4 ± 1.55 °C for C. vicina. According to the literature, these value allows a fast development of the larvae, but not to reach the maximum development rate. As control experiments clearly demonstrate that larval distribution was not due to differences in food quality, we hypothesized that the local temperature selection by larvae may result from a trade‐off between development quality and duration. Indeed, temperature controls not only the development rate of the larvae, but also the quality of their growth and survival rate. Finally, results raise questions regarding the way larvae moved on the gradient and located their preferential temperature.  相似文献   
996.
Animal locomotory morphology, i.e. morphological features involved in locomotion, is under the influence of a diverse set of ecological and behavioral factors. In teleost fish, habitat choice and foraging strategy are major determinants of locomotory morphology. In this study, we assess the influence of habitat use and foraging strategy on important locomotory traits, namely the size of the pectoral and caudal fins and the weight of the pectoral fin muscles, as applied to one of the most astonishing cases of adaptive radiation: the species flock of cichlid fishes in East African Lake Tanganyika. We also examine the course of niche partitioning along two main habitat axes, the benthic vs. limnetic and the sandy vs. rocky substrate axis. The results are then compared with available data on the cichlid adaptive radiation of neighbouring Lake Malawi. We find that pectoral fin size and muscle weight correlate with habitat use within the water column, as well as with substrate composition and foraging strategies. Niche partitioning along the benthic–limnetic axis in Lake Tanganyikan cichlids seems to follow a similar course as in Lake Malawi, while the course of habitat use with respect to substrate composition appears to differ between the cichlid assemblages of these two lakes.  相似文献   
997.
Annual mean total length (LT) of wild one‐sea‐winter (1SW) Atlantic salmon Salmo salar of the Norwegian River Imsa decreased from 63 to 54 cm with a corresponding decrease in condition factor (K) for cohorts migrating to sea from 1976 to 2010. The reduction in LT is associated with a 40% decline in mean individual mass, from 2 to 1·2 kg. Hatchery fish reared from parental fish of the same population exhibited similar changes from 1981 onwards. The decrease in LT correlated negatively with near‐surface temperatures in the eastern Norwegian Sea, thought to be the main feeding area of the present stock. Furthermore, S. salar exhibited significant variations in the proportion of cohorts attaining maturity after only one winter in the ocean. The proportion of S. salar spawning as 1SW fish was lower both in the 1970s and after 2000 than in the 1980s and 1990s associated with a gradual decline in post‐smolt growth and smaller amounts of reserve energy in the fish. In wild S. salar, there was a positive association between post‐smolt growth and the sea survival back to the River Imsa for spawning. In addition, among smolt year‐classes, there were significant positive correlations between wild and hatchery S. salar in LT, K and age at maturity. The present changes may be caused by ecosystem changes following the collapse and rebuilding of the pelagic fish abundance in the North Atlantic Ocean, a gradual decrease in zooplankton abundance and climate change with increasing surface temperature in the Norwegian Sea. Thus, the observed variation in the life‐history traits of S. salar appears primarily associated with major changes in the pelagic food web in the ocean.  相似文献   
998.
Recent studies have demonstrated adaptive evolutionary responses to climate change, but little is known about how these responses may influence ecological interactions with other organisms, including natural enemies. We used a resurrection experiment in the greenhouse to examine the effect of evolutionary responses to drought on the susceptibility of Brassica rapa plants to a fungal pathogen, Alternaria brassicae. In agreement with previous studies in this population, we found an evolutionary shift to earlier flowering postdrought, which was previously shown to be adaptive. Here, we report the novel finding that postdrought descendant plants were also more susceptible to disease, indicating a rapid evolutionary shift to increased susceptibility. This was accompanied by an evolutionary shift to increased specific leaf area (thinner leaves) following drought. We found that flowering time and disease susceptibility displayed plastic responses to experimental drought treatments, but that this plasticity did not match the direction of evolution, indicating that plastic and evolutionary responses to changes in climate can be opposed. The observed evolutionary shift to increased disease susceptibility accompanying adaptation to drought provides evidence that even if populations can rapidly adapt in response to climate change, evolution in other traits may have ecological effects that could make species more vulnerable.  相似文献   
999.
Indirect genetic effects (IGEs) are the basis of social interactions among conspecifics, and can affect genetic variation of nonsocial and social traits. We used flour beetles (Tribolium castaneum) of two phenotypically distinguishable populations to estimate genetic (co)variances and the effect of IGEs on three life‐history traits: development time (DT), growth rate (GR), and pupal body mass (BM). We found that GR was strongly affected by social environment with IGEs accounting for 18% of the heritable variation. We also discovered a sex‐specific social effect: male ratio in a group significantly affected both GR and BM; that is, beetles grew larger and faster in male‐biased social environments. Such sex‐specific IGEs have not previously been demonstrated in a nonsocial insect. Our results show that beetles that achieve a higher BM do so via a slower GR in response to social environment. Existing models of evolution in age‐structured or stage‐structured populations do not account for IGEs of social cohorts. It is likely that such IGEs have played a key role in the evolution of developmental plasticity shown by Tenebrionid larvae in response to density. Our results document an important source of genetic variation for GR, often overlooked in life‐history theory.  相似文献   
1000.
Although the phylogenetic relationships between monocot orders are sufficiently understood, a timescale of their evolution is needed. Several studies on molecular clock dating are available, but their results have been biased by their calibration schemes. Recently, the fossilized birth‐death model, a type of Bayesian dating method, was proposed, and it does not require prior calibration and allows the use all available fossils. Using this model, we conducted divergence‐time estimations of monocots to explore their evolutionary timeline without calibration bias. This is the first application of this model to seed plants. The dataset contained the matK and rbcL chloroplast genes of 118 monocot genera covering all extant orders. We employed information from 247 monocot fossils, which exceeded previous dating analyses that used a maximum of 12 monocot fossils. The crown group of monocots was dated to approximately the Late Jurassic–Early Cretaceous periods, and most extant monocot orders were estimated to diverge throughout the Early Cretaceous. Our results overlapped with the divergence time of insect lineages, such as beetles and flies, suggesting an association with pollinators in early monocot evolution. In addition, we proposed three new orders based on divergence time: Orchidales separated from Asparagales and Tofieldiales and Arales separated from Aslimatales.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号