首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   902篇
  免费   47篇
  国内免费   47篇
  2024年   1篇
  2023年   28篇
  2022年   34篇
  2021年   56篇
  2020年   26篇
  2019年   52篇
  2018年   43篇
  2017年   22篇
  2016年   38篇
  2015年   48篇
  2014年   58篇
  2013年   63篇
  2012年   48篇
  2011年   44篇
  2010年   33篇
  2009年   50篇
  2008年   49篇
  2007年   49篇
  2006年   22篇
  2005年   23篇
  2004年   22篇
  2003年   20篇
  2002年   14篇
  2001年   7篇
  2000年   11篇
  1999年   13篇
  1998年   11篇
  1997年   13篇
  1996年   8篇
  1995年   6篇
  1994年   9篇
  1993年   16篇
  1992年   5篇
  1991年   4篇
  1990年   10篇
  1989年   3篇
  1988年   3篇
  1987年   4篇
  1986年   4篇
  1985年   4篇
  1984年   4篇
  1983年   2篇
  1982年   4篇
  1981年   5篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1970年   1篇
排序方式: 共有996条查询结果,搜索用时 593 毫秒
101.
An ambiguous figure such as the Necker cube causes spontaneous perceptual switching (SPS). The mechanism of SPS in multistable perception has not yet been determined. Although early psychological studies suggested that SPS may be caused by fatigue or satiation of orientation, the neural mechanism of SPS is still unknown. Functional magnetic resonance imaging (fMRI) has shown that the dorsal attention network (DAN), which mainly controls voluntary attention, is involved in bistable perception of the Necker cube. To determine whether neural dynamics along the DAN cause SPS, we performed simultaneous electroencephalography (EEG) and fMRI during an SPS task with the Necker cube, with every SPS reported by pressing a button. This EEG–fMRI integrated analysis showed that (a) 3–4 Hz spectral EEG power modulation at fronto-central, parietal, and centro-parietal electrode sites sequentially appeared from 750 to 350 ms prior to the button press; and (b) activations correlating with the EEG modulation traveled along the DAN from the frontal to the parietal regions. These findings suggest that slow oscillation initiates SPS through global dynamics along the attentional system such as the DAN.  相似文献   
102.
The neural representation of motion aftereffects induced by various visual flows (translational, rotational, motion-in-depth, and translational transparent flows) was studied under the hypothesis that the imbalances in discharge activities would occur in favor in the direction opposite to the adapting stimulation in the monkey MST cells (cells in the medial superior temporal area) which can discriminate the mode (i.e., translational, rotational, or motion-in-depth) of the given flow. In single-unit recording experiments conducted on anaesthetized monkeys, we found that the rate of spontaneous discharge and the sensitivity to a test stimulus moving in the preferred direction decreased after receiving an adapting stimulation moving in the preferred direction, whereas they increased after receiving an adapting stimulation moving in the null direction. To consistently explain the bidirectional perception of a transparent visual flow and its unidirectional motion aftereffect by the same hypothesis, we need to assume the existence of two subtypes of MST D cells which show directionally selective responses to a translational flow: component cells and integration cells. Our physiological investigation revealed that the MST D cells could be divided into two types: one responded to a transparent flow by two peaks at the instances when the direction of one of the component flow matched the preferred direction of the cell, and the other responded by a single peak at the instance when the direction of the integrated motion matched the preferred direction. In psychophysical experiments on human subjects, we found evidence for the existence of component and integration representations in the human brain. To explain the different motion perceptions, i.e., two transparent flows during presentation of the flows and a single flow in the opposite direction to the integrated flows after stopping the flow stimuli, we suggest that the pattern-discrimination system can select the motion representation that is consistent with the perception of the pattern from two motion representations. We discuss the computational aspects related to the integration of component motion fields.  相似文献   
103.
In order to quantitatively study object perception, be it perception by biological systems or by machines, one needs to create objects and object categories with precisely definable, preferably naturalistic, properties1. Furthermore, for studies on perceptual learning, it is useful to create novel objects and object categories (or object classes) with such properties2.Many innovative and useful methods currently exist for creating novel objects and object categories3-6 (also see refs. 7,8). However, generally speaking, the existing methods have three broad types of shortcomings.First, shape variations are generally imposed by the experimenter5,9,10, and may therefore be different from the variability in natural categories, and optimized for a particular recognition algorithm. It would be desirable to have the variations arise independently of the externally imposed constraints.Second, the existing methods have difficulty capturing the shape complexity of natural objects11-13. If the goal is to study natural object perception, it is desirable for objects and object categories to be naturalistic, so as to avoid possible confounds and special cases.Third, it is generally hard to quantitatively measure the available information in the stimuli created by conventional methods. It would be desirable to create objects and object categories where the available information can be precisely measured and, where necessary, systematically manipulated (or ''tuned''). This allows one to formulate the underlying object recognition tasks in quantitative terms.Here we describe a set of algorithms, or methods, that meet all three of the above criteria. Virtual morphogenesis (VM) creates novel, naturalistic virtual 3-D objects called ''digital embryos'' by simulating the biological process of embryogenesis14. Virtual phylogenesis (VP) creates novel, naturalistic object categories by simulating the evolutionary process of natural selection9,12,13. Objects and object categories created by these simulations can be further manipulated by various morphing methods to generate systematic variations of shape characteristics15,16. The VP and morphing methods can also be applied, in principle, to novel virtual objects other than digital embryos, or to virtual versions of real-world objects9,13. Virtual objects created in this fashion can be rendered as visual images using a conventional graphical toolkit, with desired manipulations of surface texture, illumination, size, viewpoint and background. The virtual objects can also be ''printed'' as haptic objects using a conventional 3-D prototyper.We also describe some implementations of these computational algorithms to help illustrate the potential utility of the algorithms. It is important to distinguish the algorithms from their implementations. The implementations are demonstrations offered solely as a ''proof of principle'' of the underlying algorithms. It is important to note that, in general, an implementation of a computational algorithm often has limitations that the algorithm itself does not have.Together, these methods represent a set of powerful and flexible tools for studying object recognition and perceptual learning by biological and computational systems alike. With appropriate extensions, these methods may also prove useful in the study of morphogenesis and phylogenesis.  相似文献   
104.
The recognition of phytophagous insects by plants induces a set of very specific responses aimed at deterring tissue consumption and reprogramming metabolism and development of the plant to tolerate the herbivore. The recognition of insects by plants requires the plant’s ability to perceive chemical cues generated by the insects and to distinguish a particular pattern of tissue disruption. Relatively little is known about the molecular basis of insect perception by plants and the signalling mechanisms directly associated with this perception. Importantly, the insect feeding behaviour (piercing‐sucking versus chewing) is a decisive determinant of the plant’s defence response, and the mechanisms used to perceive insects from different feeding guilds may be distinct. During insect feeding, components of the saliva of chewing or piercing‐sucking insects come into contact with plant cells, and elicitors or effectors present in this insect‐derived fluid are perceived by plant cells to initiate the activation of specific signalling cascades. Although receptor–ligand interactions controlling insect perception have yet not been molecularly described, a significant number of regulatory components acting downstream of receptors and involved in the activation of defence responses against insects has been reported. Some of these regulators mediate changes in the phytohormone network, while others directly control gene expression or the redox state of the cell. These processes are central in the orchestration of plant defence responses against insects.  相似文献   
105.
Individuals are at risk when communicating because conspicuous signals attract both conspecifics and eavesdropping predators. This predation cost of communicating has typically been attributed to signalling individuals because of their conspicuous role, and is a core concept within sexual selection and communication ecology. But, if predators are attracted to signals, then receivers, both intended or otherwise, may also find themselves at risk of predation. Here, we review the theoretical basis and empirical evidence that receiving also carries a risk of predation. We distinguish between the risks of receiving and responding to signals, and we argue that receivers of signals that are long lived, are highly predictable in time or place and/or cannot be received quickly are likely to be at greater risk of predation compared to receivers of signals without these properties. We review recent empirical evidence from a variety of taxa that supports the hypothesis that receivers (including heterospecific prey) are aware of these risks and that they modify their behaviour to balance the risks against the benefits of receiving under predation threat. We also discuss the wider implications of risky receiving for receiving and signalling behaviour in prey, as well as for the prey's predators.  相似文献   
106.
The ‘uncanny valley’ response is a phenomenon involving the elicitation of a negative feeling and subsequent avoidant behaviour in human adults and infants as a result of viewing very realistic human-like robots or computer avatars. It is hypothesized that this uncanny feeling occurs because the realistic synthetic characters elicit the concept of ‘human’ but fail to satisfy it. Such violations of our normal expectations regarding social signals generate a feeling of unease. This conflict-induced uncanny valley between mutually exclusive categories (human and synthetic agent) raises a new question: could an uncanny feeling be elicited by other mutually exclusive categories, such as familiarity and novelty? Given that infants prefer both familiarity and novelty in social objects, we address this question as well as the associated developmental profile. Using the morphing technique and a preferential-looking paradigm, we demonstrated uncanny valley responses of infants to faces of mothers (i.e. familiarity) and strangers (i.e. novelty). Furthermore, this effect strengthened with the infant''s age. We excluded the possibility that infants detect and avoid traces of morphing. This conclusion follows from our finding that the infants equally preferred strangers’ faces and the morphed faces of two strangers. These results indicate that an uncanny valley between familiarity and novelty may accentuate the categorical perception of familiar and novel objects.  相似文献   
107.
This article considers categorical perception (CP) as a crucial process involved in all sort of communication throughout the biological hierarchy, i.e. in all of biosemiosis. Until now, there has been consideration of CP exclusively within the functional cycle of perception–cognition–action and it has not been considered the possibility to extend this kind of phenomena to the mere physiological level. To generalise the notion of CP in this sense, I have proposed to distinguish between categorical perception (CP) and categorical sensing (CS) in order to extend the CP framework to all communication processes in living systems, including intracellular, intercellular, metabolic, physiological, cognitive and ecological levels. The main idea is to provide an account that considers the heterarchical embeddedness of many instances of CP and CS. This will take me to relate the hierarchical nature of categorical sensing and perception with the equally hierarchical issues of the “binding problem”, “triadic causality”, the “emergent interpretant” and the increasing semiotic freedom observed in biological and cognitive systems.
Luis Emilio BruniEmail:
  相似文献   
108.
Risk and ethics in biological control   总被引:3,自引:2,他引:1  
All introduced natural enemies present a degree of risk to nontarget species. Since most biological control programs use relatively host-specific natural enemies, the risk to nontarget species is generally very low, particularly from biological control of weeds, which uses extensively tested and validated host-specificity testing procedures to predict risk. However, many of the published comments about risks of biological control are superficial or misleading, often inappropriately lumping risk from all taxa of agents as “the risk of biological control,” and ignore the potential benefits, rather than dealing with species-by-species risk and benefits. Particularly confounding accurate predictions is the common mixing of parameters of hazard and exposure in discussions of risk. In this paper, traditional risk analysis techniques are discussed and adapted for biological control. How people perceive risk is the key to understanding their attitude to risk. Some of the criticisms of biological control relating to inadequate post-release monitoring are valid and the ethical responsibilities of biological control scientists in this area are also discussed. Biological control scientists should address objectively the criticisms of biological control, continue to review and adjust current host-specificity testing procedures and make appropriate changes. This process will result in better science, ultimately delivering more focused programs, and altering the perception of risk from biological control agents by objective observers.  相似文献   
109.
Amphicoma (Glaphyridae) beetles are important pollinators of red bowl-shaped flowers in the Mediterranean. The role of color and shape in flower choice is well studied but the roles of inclination, depth, and height have seldom been investigated. Under field conditions, models were used to experimentally manipulate these three characters and visitation rates of beetles were recorded. Models with red horizontal surfaces were visited significantly more often than models with red vertical surfaces. Shallow flower models were visited significantly more than deeper equivalents. Models below or at the height of natural flower populations elicited significantly more landings than models above the height of flowers. Inclination, depth, and height characteristics are all likely to be important components in the flower preferences exhibited by pollinating beetles.  相似文献   
110.
Technologies based on extremely highfrequency electromagnetic fields, inparticular in the terahertz region, arequite recent and new to the public. While anumber of advantages have been shown,especially in the biomedical area,biological effects and possible healthimplications have not been fullyinvestigated. The experience gained withelectromagnetic fields of lowerfrequencies, from ELF to microwaves,suggests that innovating technologies maycreate concern, or even fear, among thepublic for hypothetical health risks.Social research has shown that worries arerelated to the perception of risks by thepublic more than to their actual existence.Risk perception depends on several factors,many of which are relevant forelectromagnetic fields. They include lackof familiarity with the agent, difficultyin understanding interaction mechanisms,and uncertainty in scientific knowledge.Lessons learnt from the past lead torecommend that specific research onbiological effects of terahertz radiationbe started from the very beginning of thedevelopment of technological applicationsand that a continuous and effectivedialogue be established between thescientific community and the public.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号