首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   941篇
  免费   86篇
  国内免费   34篇
  2023年   24篇
  2022年   34篇
  2021年   56篇
  2020年   47篇
  2019年   57篇
  2018年   51篇
  2017年   33篇
  2016年   34篇
  2015年   47篇
  2014年   76篇
  2013年   62篇
  2012年   27篇
  2011年   35篇
  2010年   33篇
  2009年   44篇
  2008年   34篇
  2007年   41篇
  2006年   32篇
  2005年   19篇
  2004年   23篇
  2003年   20篇
  2002年   15篇
  2001年   14篇
  2000年   9篇
  1999年   19篇
  1998年   8篇
  1997年   11篇
  1996年   5篇
  1995年   12篇
  1994年   16篇
  1993年   5篇
  1992年   11篇
  1991年   6篇
  1990年   6篇
  1989年   8篇
  1988年   9篇
  1987年   9篇
  1985年   7篇
  1984年   4篇
  1983年   6篇
  1982年   10篇
  1981年   8篇
  1980年   3篇
  1979年   5篇
  1978年   2篇
  1977年   3篇
  1976年   4篇
  1973年   4篇
  1972年   6篇
  1971年   4篇
排序方式: 共有1061条查询结果,搜索用时 375 毫秒
61.
During the course of their differentiation, embryonic lens fibers undergo loss of their cytoplasmic organelles and nuclei. The denucleation process bears similarities to the nuclear breakdown that occurs during apoptosis. This has given rise to the hypothesis that this denucleation is analogous to apoptosis, but without the plasma membrane changes characteristic of apoptotic cell death. Previous work has shown that several members of the apoptotic cascade are active during denucleation. Here, we have overexpressed the anti-apoptotic molecule bcl-2 in developing lenses of the 8-day-old chick embryo in ovo, using the replication-competent retrovirus RCAS. We find that lenses overexpressing bcl-2 show varying degrees of distortion in comparison with untreated and negative insert controls, including a more spherical shape and disorganized fiber cells. All overexpressing lenses showed significantly higher numbers of smaller nuclei in the lens core, where denucleation begins. There was no change in cell size or pattern of proliferation. These in vivo results were confirmed in vitro using lens epithelial cell cultures, which differentiate into lentoids. The lentoids in treated cultures showed the same effect on nuclear number and size. We further found that in lenses overexpressing bcl-2 there was a reduction in the activation of caspase-9 and the cleavage of the caspase substrate DFF45, and, in the lens core, a failure of the nuclear chromatin to condense. These results provide strong support for the view that embryonic lens fiber cell denucleation is analogous to the nuclear degradation that occurs during apoptosis, and that similar control pathways are involved in both these phenomena.  相似文献   
62.
Retinal impairment is one of the leading causes of visual loss in an aging human population. To explore a possible cause for retinal damage in the human population, we have monitored DNA oxidation in human retinal pigment epithelial (RPE) cells after exposure to hydrogen peroxide (H2O2) or the quinolone antibacterial sparfloxacin. When H2O2- or sparfloxacin-exposed cells were further exposed to ultraviolet A (UVA) irradiation, oxidative damage to the DNA of these cells was greatly increased over baseline values. This RPE+pharmaceutical-UVA cell system was developed to mimic in vivo retinal degeneration, seen in mouse studies using quinolone and UVA exposure. DNA damage produced by sparfloxacin and UVA in RPE cells could be remedied by the use of antioxidants, indicating a possible in vivo method for prevention or minimization of retinal damage in humans This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
63.
During anoxia, overall protein synthesis is almost undetectable in the brain of the western painted turtle. The aim of this investigation was to address the question of whether there are alterations to specific proteins by comparing the normoxic and anoxic brain proteomes. Reductions in creatine kinase, hexokinase, glyceraldehyde‐3‐phosphate dehydrogenase, and pyruvate kinase reflected the reduced production of adenosine triphosphate (ATP) during anoxia while the reduction in transitional endoplasmic reticulum ATPase reflected the conservation of ATP or possibly a decrease in intracellular Ca2+. In terms of neural protection programed cell death 6 interacting protein (PDCD6IP; a protein associated with apoptosis), dihydropyrimidinase‐like protein, t‐complex protein, and guanine nucleotide protein G(o) subunit alpha (Go alpha; proteins associated with neural degradation and impaired cognitive function) also declined. A decline in actin, gelsolin, and PDCD6IP, together with an increase in tubulin, also provided evidence for the induction of a neurological repair response. Although these proteomic alterations show some similarities with the crucian carp (another anoxia‐tolerant species), there are species‐specific responses, which supports the theory of no single strategy for anoxia tolerance. These findings also suggest the anoxic turtle brain could be an etiological model for investigating mammalian hypoxic damage and clinical neurological disorders.  相似文献   
64.
Cones comprise only a small portion of the photoreceptors in mammalian retinas. However, cones are vital for color vision and visual perception, and their loss severely diminishes the quality of life for patients with retinal degenerative diseases. Cones function in bright light and have higher demand for energy than rods; yet, the mechanisms that support the energy requirements of cones are poorly understood. One such pathway that potentially could sustain cones under basal and stress conditions is macroautophagy. We addressed the role of macroautophagy in cones by examining how the genetic block of this pathway affects the structural integrity, survival, and function of these neurons. We found that macroautophagy was not detectable in cones under normal conditions but was readily observed following 24 h of fasting. Consistent with this, starvation induced phosphorylation of AMPK specifically in cones indicating cellular starvation. Inhibiting macroautophagy in cones by deleting the essential macroautophagy gene Atg5 led to reduced cone function following starvation suggesting that cones are sensitive to systemic changes in nutrients and activate macroautophagy to maintain their function. ATG5-deficiency rendered cones susceptible to light-induced damage and caused accumulation of damaged mitochondria in the inner segments, shortening of the outer segments, and degeneration of all cone types, revealing the importance of mitophagy in supporting cone metabolic needs. Our results demonstrate that macroautophagy supports the function and long-term survival of cones providing for their unique metabolic requirements and resistance to stress. Targeting macroautophagy has the potential to preserve cone-mediated vision during retinal degenerative diseases.  相似文献   
65.
Light‐induced retinal degeneration is characterized by photoreceptor cell death. Many studies showed that photoreceptor demise is caspase‐independent. In our laboratory we showed that leucocyte elastase inhibitor/LEI‐derived DNase II (LEI/L‐DNase II), a caspase‐independent apoptotic pathway, is responsible for photoreceptor death. In this work, we investigated the activation of a pro‐survival kinase, the protein kinase C (PKC) zeta. We show that light exposure induced PKC zeta activation. PKC zeta interacts with LEI/L‐DNase II and controls its DNase activity by impairing its nuclear translocation. These results highlight the role of PKC zeta in retinal physiology and show that this kinase can control caspase‐independent pathways.  相似文献   
66.
Progress in understanding the pathophysiology, and providing novel treatments for glaucoma is dependent on good animal models of the disease. We present here a protocol for elevating intraocular pressure (IOP) in the rat, by injecting magnetic microspheres into the anterior chamber of the eye. The use of magnetic particles allows the user to manipulate the beads into the iridocorneal angle, thus providing a very effective blockade of fluid outflow from the trabecular meshwork. This leads to long-lasting IOP rises, and eventually neuronal death in the ganglion cell layer (GCL) as well as optic nerve pathology, as seen in patients with the disease. This method is simple to perform, as it does not require machinery, specialist surgical skills, or many hours of practice to perfect. Furthermore, the pressure elevations are very robust, and reinjection of the magnetic microspheres is not usually required unlike in some other models using plastic beads. Additionally, we believe this method is suitable for adaptation for the mouse eye.  相似文献   
67.
Age-related macular degeneration (AMD) is a leading cause of visual impairment in the developed world. The disease manifests itself by the destruction of the center of the retina, called the macula, resulting in the loss of central vision. Early AMD is characterised by the presence of small, yellowish lesions called soft drusen that can progress onto late AMD such as geographic atrophy (dry AMD) or neovascularisation (wet AMD). Although the clinical changes are well described, and the understanding of genetic influences on conferring AMD risk are getting ever more detailed, one area lacking major progress is an understanding of the biochemical consequences of genetic risk. This is partly due to difficulties in understanding the biochemistry of Bruch’s membrane, a very thin extracellular matrix that acts as a biological filter of material from the blood supply and a scaffold on which the retinal pigment epithelial (RPE) cell monolayer resides. Drusen form within Bruch’s membrane and their presence disrupts nutrient flow to the RPE cells. Only by investigating the protein composition of Bruch’s membrane, and indeed how other proteins interact with it, can researchers hope to unravel the biochemical mechanisms underpinning drusen formation, development of AMD and subsequent vision loss. This paper details methodologies for enriching either whole Bruch’s membrane, or just from the macula region, so that it can be used for downstream biochemical analysis, and provide examples of how this is already changing the understanding of Bruch’s membrane biochemistry.  相似文献   
68.
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号