首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   39篇
  2024年   2篇
  2023年   1篇
  2020年   6篇
  2019年   13篇
  2018年   15篇
  2017年   6篇
  2016年   6篇
  2015年   7篇
  2014年   8篇
  2013年   6篇
  2012年   2篇
  2011年   3篇
排序方式: 共有75条查询结果,搜索用时 31 毫秒
11.
n‐type Mg3Sb1.5Bi0.5 has recently been discovered to be a promising thermoelectric material, yet the effective n‐type dopants are mainly limited to the chalcogens. This may be attributed to the limited chemical insight into the effects from different n‐type dopants. By comparing the effects of different chalcogen dopants Q (Q = S, Se, and Te) on thermoelectric properties, it is found that the chalcogen dopants Q become more efficient with decreasing electronegativity difference between Q and Mg, which is mainly due to the increasing carrier concentration and mobility. Using density functional theory calculations, it is shown that the improving carrier concentration originates from the increasing doping limit induced by the stabilizing extrinsic defect. Moreover, the increasing electron mobility with decreasing electronegativity difference between Q and Mg is attributed to the smaller effective mass resulting from the enhancing chemical bond covalency, which is supported by the decreasing theoretical density of states. According to the above trends, a simple guiding principle based on electronegativity is proposed to shed new light on n‐type doping in Zintl antimonides.  相似文献   
12.
This paper demonstrates that thermal energy radiated from a human finger can be converted efficiently into electricity by a nanocrystal (NC) thin film that substantially suppresses thermal conduction, but still allows electric conduction. The converting efficiencies of the chalcogenide NC thin films with dimensions 40 µm × 20 µm × 20 nm, prepared on flexible substrates by a solution process, are maximized by adjusting the NC size. A Seebeck coefficient of S = 1829 µV K?1, and a dimensionless thermoelectric figure‐of‐merit, ZT = 0.68 are achieved at ambient temperature for p‐ and n‐type NC thin films, respectively. A thermoelectric array consisting of p‐ and n‐type NC thin films generates a voltage of 645 mV for a temperature gradient of 10 K. Furthermore, the donut‐shaped pn array can generate a voltage of 170 mV from the heat supplied by an individual's finger.  相似文献   
13.
AgPbmSbTem+2 (abbreviated as LAST) has received tremendous attention as a promising thermoelectric material at medium temperature. It can be synthesized by a simple process combining mechanical alloying (MA) and spark plasma sintering (SPS). This work reveals that the thermoelectric figure of merit (ZT value) of LAST can be increased by 50%, benefiting from enhanced electrical conductivity and thermopower due to refined grains and from nanostructuring realized by repeating the milling and SPS processes. This modified process and further compositional optimization enables ZT values of the LAST alloys up to 1.54 at 723 K. This supports the potential of the LAST alloy as a promising medium‐temperature thermoelectric material and reveals the validity of ZT enhancement by a simple microstructural refining and nanostructuring method.  相似文献   
14.
Despite the unfavorable band structure with twofold degeneracy at the valence band maximum, MgAgSb is still an excellent p‐type thermoelectric material for applications near room temperature. The intrinsically weak electron–phonon coupling, reflected by the low deformation potential Edef ≈ 6.3 eV, plays a crucial role in the relatively high power factor of MgAgSb. More importantly, Li is successfully doped into Mg site to tune the carrier concentration, leading to the resistivity reduction by a factor of 3 and a consequent increase in power factor by ≈30% at 300 K. Low lattice thermal conductivity can be simultaneously achieved by all‐scale hierarchical phonon scattering architecture including high density of dislocations and nanoscale stacking faults, nanoinclusions, and multiscale grain boundaries. Collectively, much higher average power factor ≈25 μW cm?1 K?2 with a high average ZT ≈ 1.1 from 300 to 548 K is achieved for 0.01 Li doping, which would result in a high output power density ≈1.56 W cm?2 and leg efficiency ≈9.2% by calculations assuming cold‐side temperature Tc = 323 K, hot‐side temperature Th = 548 K, and leg length = 2 mm.  相似文献   
15.
Iodine‐doped n‐type SnSe polycrystalline by melting and hot pressing is prepared. The prepared material is anisotropic with a peak ZT of ≈0.8 at about 773 K measured along the hot pressing direction. This is the first report on thermoelectric properties of n‐type Sn chalcogenide alloys. With increasing content of iodine, the carrier concentration changed from 2.3 × 1017 cm?3 (p‐type) to 5.0 × 1015 cm?3 (n‐type) then to 2.0 × 1017 cm?3 (n‐type). The decent ZT is mainly attributed to the intrinsically low thermal conductivity due to the high anharmonicity of the chemical bonds like those in p‐type SnSe. By alloying with 10 at% SnS, even lower thermal conductivity and an enhanced Seebeck coefficient were achieved, leading to an increased ZT of ≈1.0 at about 773 K measured also along the hot pressing direction.  相似文献   
16.
Through simultaneously enhancing the power factor by engineering the extra light band and enhancing phonon scatterings by introducing a high density of stacking faults, a record figure‐of‐merit over 2.0 is achieved in p‐type AgSbTe2?xSex alloys. Density functional theory calculations confirm the presence of the light valence band with large degeneracy in AgSbTe2, and that alloying with Se decreases the energy offset between the light valence band and the valence band maximum. Therefore, a significantly enhanced power factor is realized in p‐type AgSbTe2?xSex alloys. In addition, transmission electron microscopy studies indicate the appearance of stacking faults and grain boundaries, which together with grain boundaries and point defects significantly strengthen phonon scatterings, leading to an ultralow thermal conductivity. The synergetic strategy of simultaneously enhancing power factor and strengthening phonon scattering developed in this study opens up a robust pathway to tailor thermoelectric performance.  相似文献   
17.
It is reported that electron doped n‐type SnSe2 nanoplates show promising thermoelectric performance at medium temperatures. After simultaneous introduction of Se deficiency and Cl doping, the Fermi level of SnSe2 shifts toward the conduction band, resulting in two orders of magnitude increase in carrier concentration and a transition to degenerate transport behavior. In addition, all‐scale hierarchical phonon scattering centers, such as point defects, nanograin boundaries, stacking faults, and the layered nanostructures, cooperate to produce very low lattice thermal conductivity. As a result, an enhanced in‐plane thermoelectric figure of merit ZTmax of 0.63 is achieved for a 1.5 at% Cl doped SnSe1.95 pellet at 673 K, which is much higher than the corresponding in‐plane ZT of pure SnSe2 (0.08).  相似文献   
18.
In this study, a record high figure of merit (ZT) of ≈1.1 at 773 K is reported in n‐type highly distorted Sb‐doped SnSe microplates via a facile solvothermal method. The pellets sintered from the Sb‐doped SnSe microplates show a high power factor of ≈2.4 µW cm?1 K?2 and an ultralow thermal conductivity of ≈0.17 W m?1 K?1 at 773 K, leading a record high ZT. Such a high power factor is attributed to a high electron concentration of 3.94 × 1019 cm?3 via Sb‐enabled electron doping, and the ultralow thermal conductivity derives from the enhanced phonon scattering at intensive crystal defects, including severe lattice distortions, dislocations, and lattice bent, observed by detailed structural characterizations. This study fills in the gaps of fundamental doping mechanisms of Sb in SnSe system, and provides a new perspective to achieve high thermoelectric performance in n‐type polycrystalline SnSe.  相似文献   
19.
20.
Despite the effectiveness of sodium as a p‐type dopant for lead chalcogenides, its solubility is shown to be very limited in these hosts. Here, a high thermoelectric efficiency of ≈2 over a wide temperature range is reported in multiphase quaternary (PbTe)0.65(PbS)0.25(PbSe)0.1 compounds that are doped with sodium at concentrations greater than the solubility limits of the matrix. Although these compounds present room temperature thermoelectric efficiencies similar to sodium doped PbTe, a dramatically enhanced Hall carrier mobility at temperatures above 600 K for heavily doped compounds results in significantly enhanced thermoelectric efficiencies at elevated temperatures. This is achieved through the composition modulation doping mechanism resulting from heterogeneous distribution of the sodium dopant between precipitates and the matrix at elevated temperatures. These results can lead to further advances in designing high performance multiphase thermoelectric materials with intrinsically heterogeneous dopant distributions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号