首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2828篇
  免费   164篇
  国内免费   347篇
  2024年   9篇
  2023年   86篇
  2022年   136篇
  2021年   117篇
  2020年   99篇
  2019年   143篇
  2018年   95篇
  2017年   91篇
  2016年   96篇
  2015年   122篇
  2014年   153篇
  2013年   206篇
  2012年   110篇
  2011年   146篇
  2010年   112篇
  2009年   165篇
  2008年   155篇
  2007年   154篇
  2006年   175篇
  2005年   149篇
  2004年   128篇
  2003年   104篇
  2002年   91篇
  2001年   77篇
  2000年   70篇
  1999年   62篇
  1998年   40篇
  1997年   48篇
  1996年   34篇
  1995年   24篇
  1994年   29篇
  1993年   25篇
  1992年   24篇
  1991年   20篇
  1990年   8篇
  1989年   5篇
  1988年   6篇
  1987年   3篇
  1986年   2篇
  1985年   7篇
  1984年   4篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1978年   2篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
排序方式: 共有3339条查询结果,搜索用时 15 毫秒
91.
The prevalence of SARS-CoV-2 variants of concern (VOCs) is still escalating throughout the world. However, the level of neutralization of the inactivated viral vaccine recipients’ sera and convalescent sera against all VOCs, including B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), B.1.617.2 (Delta), and B.1.1.529 (Omicron) remains to be lack of comparative analysis. Therefore, we constructed pseudoviruses of five VOCs using a lentiviral-based system and analyzed their viral infectivity and neutralization resistance to convalescent and BBIBP-CorV vaccinee serum at different times. Our results show that, compared with the wild-type strain (WT), five VOC pseudoviruses showed higher infection, of which B.1.617.2 and B.1.1.529 variant pseudoviruses exhibited higher infection rates than wild-type or other VOC strains, respectively. Sera from 10 vaccinated individuals at the 1, 3 and 5-month post second dose or from 10 convalescent at 14 and 200 days after discharge retained neutralizing activity against all strains but exhibited decreased neutralization activity significantly against the five VOC variant pseudoviruses over time compared to WT. Notably, 100% (30/30) of the vaccinee serum samples showed more than a 2.5-fold reduction in neutralizing activity against B.1.1.529, and 90% (18/20) of the convalescent serum samples showed more than 2.5-fold reduction in neutralization against B.1.1.529. These findings demonstrate the reduced protection against the VOCs in vaccinated and convalescent individuals over time, indicating that it is necessary to have a booster shot and develop new vaccines capable of eliciting broad neutralization antibodies.  相似文献   
92.
Helicobacter pylori (H. pylori) causes gastric mucosa inflammation and gastric cancer mostly via several virulence factors. Induction of proinflammatory pathways plays a crucial role in chronic inflammation, gastric carcinoma, and H. pylori pathogenesis. Herbal medicines (HMs) are nontoxic, inexpensive, and mostly anti-inflammatory reminding meticulous emphasis on the elimination of H. pylori and gastric cancer. Several HM has exerted paramount anti-H. pylori traits. In addition, they exert anti-inflammatory effects through several cellular circuits such as inhibition of 5′-adenosine monophosphate-activated protein kinase, nuclear factor-κB, and activator protein-1 pathway activation leading to the inhibition of proinflammatory cytokines (interleukin 1α [IL-1α], IL-1β, IL-6, IL-8, IL-12, interferon γ, and tumor necrosis factor-α) expression. Furthermore, they inhibit nitrous oxide release and COX-2 and iNOS activity. The apoptosis induction in Th1 and Th17-polarized lymphocytes and M2-macrophagic polarization and STAT6 activation has also been exhibited. Thus, their exact consumable amount has not been revealed, and clinical trials are needed to achieve optimal concentration and their pharmacokinetics. In the aspect of bioavailability, solubility, absorption, and metabolism of herbal compounds, nanocarriers such as poly lactideco-glycolide-based loading and related formulations are helpful. Noticeably, combined therapies accompanied by probiotics can also be examined for better clearance of gastric mucosa. In addition, downregulation of inflammatory microRNAs (miRNAs) by HMs and upregulation of those anti-inflammatory miRNAs is proposed to protect the gastric mucosa. Thus there is anticipation that in near future HM-based formulations and proper delivery systems are possibly applicable against gastric cancer or other ailments because of H. pylori.  相似文献   
93.
MicroRNAs (miRNAs) are endogenous mediators of RNA interference and have key roles in the modulation of gene expression under healthy, inflamed, stimulated, carcinogenic, or other cells, and tissues of a pathological state. Many studies have proved the association between miRNAs and cancer. The role of miR-326 as a tumor suppressor miRNA in much human cancer confirmed. We will explain the history and the role of miRNAs changes, especially miR-326 in cancers and other pathological conditions. Attuned with these facts, this review highlights recent preclinical and clinical research performed on miRNAs as novel promising diagnostic biomarkers of patients at early stages, prediction of prognosis, and monitoring of the patients in response to treatment. All related publications retrieved from the PubMed database, with keywords such as epigenetic, miRNA, microRNA, miR-326, cancer, diagnostic biomarker, and therapeutic target similar terms from 1899 to 2018 with limitations in the English language. Recently, researchers have focused on the impacts of miRNAs and their association in inflammatory, autoinflammatory, and cancerous conditions. Recent studies have suggested a major pathogenic role in cancers and autoinflammatory diseases. Investigations have explained the role of miRNAs in cancers, autoimmunity, and autoinflammatory diseases, and so on. The miRNA-326 expression has an important role in cancer conditions and other diseases.  相似文献   
94.
Conjugated vaccines prepared from the capsular polysaccharide of Streptococcus pneumoniae can provide immunization against invasive pneumococcal disease, meningitis, and otitis media. One of the critical steps in the production of these vaccines is the removal of free (unreacted) polysaccharides from the protein-polysaccharide conjugate. Experimental studies were performed to evaluate the effects of membrane pore size, filtrate flux, and solution conditions on the transmission of both the conjugate and free polysaccharide through different ultrafiltration membranes. Conjugate purification was done using diafiltration performed in a linearly-scalable tangential flow filtration cassette. More than 98% of the free polysaccharide was removed within a 5-diavolume diafiltration process, which is a significant improvement over previously reported results for purification of similar conjugated vaccines. These results clearly demonstrate the opportunities for using ultrafiltration/diafiltration for the final purification of conjugated vaccine products.  相似文献   
95.
This editorial highlights a study by Rodriguez, Sanchez‐Moran et al. (2019) in the current issue of the Journal of Neurochemistry, in which the authors describe a microcephalic boy carrying the novel heterozygous de novo missense mutation c.560A> G; p.Asp187Gly in Cdh1/Fzr1 encoding the APC/C E3‐ubiquitin ligase cofactor CDH1. A functional characterization of mutant APC/CCDH1 confirms an aberrant division of neural progenitor cells, a condition known to determine the mouse brain cortex size. These data suggest that APC/CCDH1 may contribute to the regulation of the human brain size.

  相似文献   

96.
Dengue, a mosquito-borne disease, is caused by four known dengue serotypes. This infection causes a range of symptoms from a mild fever to a sever homorganic fever and death. It is a serious public health problem in subtropical and tropical countries. There is no specific vaccine currently available for clinical use and study on this issue is ongoing. In this study, bioinformatics approaches were used to predict antigenic, immunogenic, non-allergenic, and conserved B and T-cell epitopes as promising targets to design an effective peptide-based vaccine against dengue virus. Molecular docking analysis indicated the deep binding of the identified epitopes in the binding groove of the most popular human MHC I allele (human leukocyte antigens [HLA] A*0201). The final vaccine construct was created by conjugating the B and T-cell identified epitopes using proper linkers and adding an appropriate adjuvant at the N-terminal. The characteristics of the new subunit vaccine demonstrated that the epitope-based vaccine was antigenic, non-toxic, stable, and soluble. Other physicochemical properties of the new designed construct including isoelectric point value, aliphatic index, and grand average of hydropathicity were biologically considerable. Molecular docking of the engineered vaccine with Toll-like receptor 2 (TLR2) model revealed the hydrophobic interaction between the adjuvant and the ligand binding regions in the hydrophobic channel of TLR2. The study results indicated the high potential capability of the new multi-epitope vaccine to induce cellular and humoral immune responses against the dengue virus. Further experimental tests are required to investigate the immune protection capacity of the new vaccine construct in animal models.

Communicated by Ramaswamy H. Sarma  相似文献   

97.
Outbreak of Human Herpes virus-5 (HHV-5) infection in emerging countries has raised worldwide health concern owing to prevalence of congenital impairments and life threatening consequences in immunocompromised individuals. Thus, there lies an impending need to develop vaccine against HHV-5. HHV-5 enters into host cells with the help of necessary components glycoprotein B (gB) and H/L. In this study, the conformational linear B-cell and T-cell epitopes for gB of HHV-5 have been predicted using conformational approaches, for their possible collective use as vaccine candidates. We examined epitope’s interactions with major histocompatibility complexes using molecular docking and also investigated their stable binding with specific toll like receptor-2 (TLR2), present on host cells during HHV-5 infection. Predicted MHC-I epitope ‘LVAIAVVII’ with high antigenicity and large coverage of HLA alleles was found to superimpose on MHC-II epitope (Rank 1) and was also identified to be the core sequence of putative B cell epitope ‘ILVAIAVVIITYLI’. Resulting epitope was found to have consistent interaction with TLR2 during long term (100?ns) MD run. We also validated this nonamer epitope for its dissimilarity with human genome and high population coverage, suggesting it to be a potential vaccine candidate with higher coverage for both the MHC alleles of Indian population.

Communicated by Ramaswamy H. Sarma  相似文献   

98.
Visceral leishmaniasis (VL) is a deadly parasitic infection which affects poorest to poor population living in the endemic countries. Increasing resistant to existing drugs, disease burden and a significant number of deaths, necessitates the need for an effective vaccine to prevent the VL infection. This study employed a combinatorial approach to develop a multi-epitope subunit vaccine by exploiting Leishmania donovani membrane proteins. Cytotoxic T- and helper T-lymphocyte binding epitopes along with suitable adjuvant and linkers were joined together in a sequential manner to design the subunit vaccine. The occurrence of B-cell and IFN-γ inducing epitopes approves the ability of subunit vaccine to develop humoral and cell-mediated immune response. Physiochemical parameters of vaccine protein were also assessed followed by homology modeling, model refinement and validation. Moreover, disulfide engineering was performed for the increasing stability of the designed vaccine and molecular dynamics simulation was performed for the comparative stability purposes and to conform the geometric conformations. Further, molecular docking and molecular dynamics simulation study of a mutated and non-mutated subunit vaccine against TLR-4 immune receptor were performed and respective complex stability was determined. In silico cloning ensures the expression of designed vaccine in pET28a(+) expression vector. This study offers a cost-effective and time-saving way to design a novel immunogenic vaccine that could be used to prevent VL infection.

Communicated by Ramaswamy H. Sarma  相似文献   

99.
Acute liver failure (ALF) is a disease resulted from diverse etiology, which generally leads to a rapid degenerated hepatic function. However, transplantation bone marrow–derived mesenchymal stem cells (BMSCs) transplantation has been suggested to relieve ALF. Interestingly, microRNA-214 (miR-214) could potentially regulate differentiation and migration of BMSCs. The present study aims to inquire whether miR-214 affects therapeutic potential of BMSCs transplantation by targeting PIM-1 in ALF. 120 male Wistar rats were induced as ALF model rats and transplanted with BMSCs post-alteration of miR-214 or PIM-1 expression. Further experiments were performed to detect biochemical index (alanine aminotransferase [ALT], aspartate transaminase [AST], total bilirubin [TBiL]), and expression of miR-214, PIM-1, hepatocyte growth factor (HGF), caspase 3, tumor necrosis factor-α (TNF-α), and interleukin-10 (IL-10) in rat serum. Apart from the above detection, apoptosis of hepatocytes and Ki67 protein expression in hepatic tissues of rats were additionally assessed. After BMSCs transplantation with miR-214 inhibition, a decreased expression of ALT, AST, and TBiL yet an increased expression of HGF was shown, coupled with a decline in the expression of caspase 3, TNF-α, and IL-10. Meanwhile, alleviated hepatic injury and decreased apoptotic index of hepatic cells were observed and the positive rate of Ki67 protein expression was significantly increased. Moreover, miR-214 and caspase 3, TNF-α, and IL-10 decreased notably, while PIM-1 was upregulated in response to miR-214 inhibition. Strikingly, the inhibition of PIM-1 reversed effects triggered by miR-214 inhibition. These findings indicated that downregulation of miR-214 improves therapeutic potential of BMSCs transplantation by upregulating PIM-1 for ALF.  相似文献   
100.
近年来,核酸疫苗、基因工程疫苗、合成肽疫苗等新型疫苗的研究取得快速的发展,但这些疫苗与传统的灭活或活体疫苗相比,往往存在免疫原性差等问题,因此需要佐剂来增强其作用.佐剂已被证明是疫苗中的关键成分,佐剂种类众多,尚无统一的分类方法,目前应用最多的佐剂是铝佐剂和弗氏佐剂,但随着新型疫苗的开发,新型佐剂的开发必不可少.根据目...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号