首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5347篇
  免费   412篇
  国内免费   343篇
  2024年   12篇
  2023年   77篇
  2022年   80篇
  2021年   142篇
  2020年   170篇
  2019年   185篇
  2018年   148篇
  2017年   166篇
  2016年   204篇
  2015年   156篇
  2014年   273篇
  2013年   349篇
  2012年   240篇
  2011年   211篇
  2010年   216篇
  2009年   263篇
  2008年   271篇
  2007年   274篇
  2006年   245篇
  2005年   226篇
  2004年   211篇
  2003年   181篇
  2002年   162篇
  2001年   148篇
  2000年   129篇
  1999年   131篇
  1998年   99篇
  1997年   92篇
  1996年   96篇
  1995年   97篇
  1994年   75篇
  1993年   67篇
  1992年   62篇
  1991年   57篇
  1990年   60篇
  1989年   57篇
  1988年   45篇
  1987年   47篇
  1986年   34篇
  1985年   50篇
  1984年   53篇
  1983年   27篇
  1982年   29篇
  1981年   37篇
  1980年   25篇
  1979年   28篇
  1978年   16篇
  1977年   15篇
  1974年   13篇
  1973年   17篇
排序方式: 共有6102条查询结果,搜索用时 31 毫秒
91.
Cancer cell lines play a crucial role as invaluable models in cancer research, facilitating the examination of cancer progression as well as the advancement of diagnostics and treatments. While they may not perfectly replicate the original tumor, they generally exhibit similar characteristics. Low-passage cancer cell lines are generally preferred due to their closer resemblance to the original tumor, as long-term culturing can alter the genetic and molecular profiles of a cell line thereby highlighting the importance of monitoring the passage number (PN). Variations in proliferation, migration, gene expression, and drug sensitivity can be linked to PN differences. PN can also influence DNA methylation levels, metabolic profiles, and the expression of genes/or proteins in cancer cell lines. When conducting research on cancer cell lines, it is crucial for researchers to carefully select the appropriate PN to maintain consistency and reliability of results. Moreover, to ensure dependability and replicability, scientists ought to actively track the growth, migration, and gene/or protein profiles of cancer cell lines at specific PNs. This approach enables the identification of the most suitable range of PNs for experiments, guaranteeing consistent and precise results. Additionally, such efforts serve to minimize disparities and uphold the integrity of research. In this review, we have laid out recommendations for laboratories to overcome these PN discrepancies when working with cancer cell lines.  相似文献   
92.
Karyomorphological comparisons were made of 16 native and cultivated species ofSelaginella in Japan. The somatic chromosome numbers are 2n=16 inS. boninensis; 2n=18 inS. doederleinii, S. helvetica, S. limbata, S. lutchuensis, S. nipponica, S. selaginoides, S. tama-montana, andS. uncinata; 2n=20 inS. biformis, S. involvens, S. moellendorffii, S. remotifolia, andS. tamariscina; 2n=30 inS. rossii; and 2n=32 inS. heterostachys. The interphase nuclei of all species examined are uniformly assigned to the simple chromocenter type. The metaphase karyotype of 2n=16 (x=8) is 8 m (=median centromeric chromosomes)+8(st+t)(=subterminal and terminal). The group of the species having 2n=18 (x=9) is heterogeneous karyomorphologically: The karyotype ofS. nipponica is 2n=18=6 m+12(st+t),S. tama-montana 10 m+2 sm(=submedian)+6(st+t), andS. uncinata 6 m+7 sm+5(st+t). Although the remaining five species have the common karyotype 8 m+4 sm+6(st+t), the values of mean chromosome length are variable. Another group of the specles having 2n=20 (x=10) is homogeneous, since all species have the same karyotypes 8 m+4 sm+8(st+t) and have similar chromosome size. The karyotype of 2n=30 is 12 m+6 sm+12(st+t) and is suggested to be a triploid of x=10, and 2n=32=16m+16(st+t), a tetraploid of x=8. Thus, three kinds of basic chromosome numbers, x=8, 9, 10 are present in JapaneseSelaginella examined, and their karyomorphological relationships are discussed.  相似文献   
93.
Web surveys have replaced Face-to-Face and computer assisted telephone interviewing (CATI) as the main mode of data collection in most countries. This trend was reinforced as a consequence of COVID-19 pandemic-related restrictions. However, this mode still faces significant limitations in obtaining probability-based samples of the general population. For this reason, most web surveys rely on nonprobability survey designs. Whereas probability-based designs continue to be the gold standard in survey sampling, nonprobability web surveys may still prove useful in some situations. For instance, when small subpopulations are the group under study and probability sampling is unlikely to meet sample size requirements, complementing a small probability sample with a larger nonprobability one may improve the efficiency of the estimates. Nonprobability samples may also be designed as a mean for compensating for known biases in probability-based web survey samples by purposely targeting respondent profiles that tend to be underrepresented in these surveys. This is the case in the Survey on the impact of the COVID-19 pandemic in Spain (ESPACOV) that motivates this paper. In this paper, we propose a methodology for combining probability and nonprobability web-based survey samples with the help of machine-learning techniques. We then assess the efficiency of the resulting estimates by comparing them with other strategies that have been used before. Our simulation study and the application of the proposed estimation method to the second wave of the ESPACOV Survey allow us to conclude that this is the best option for reducing the biases observed in our data.  相似文献   
94.
Previous studies have demonstrated selective predation for vertebral traits of larvae in the stickleback Gasterosteus aculeatus. I tested the hypothesis that this selection results from a direct functional advantage to particular vertebral phenotypes by direct measurement of the burst swimming performance of larvae. Within a narrow window of lengths, burst speed did depend on vertebral phenotype. As in the previous predation experiments, performance was related more directly to the ratio of abdominal to caudal vertebrae (VR) than to the total number of vertebrae (VN), and the optimal VR decreased as larval length increased. Changes with length in the vertebral phenotype frequencies of wild larvae provided evidence of selection for VR and for VN in the wild. Larvae with particular VR increased in frequency in the wild at just those lengths when their relative performance was superior in the laboratory. The observed pattern of length-dependent selection for vertebral number provides an explanation for the widespread trends in vertebral number that occur among populations of related fishes.  相似文献   
95.
Variation in the number of vertebrae is widespread in fishes, and is partly genetic in origin. The adaptive significance of this variation was tested by exposing larvae of the threespine stickleback (Gasterosteus aculeatus) to predation by sunfish (Lepomis gibbosus). Two vertebral characters were considered: the total number (VN) and the ratio of abdominal to caudal vertebrae (VR). Predation was selective for both characters, but selection was more directly related to VR than to VN. The direction of selection depended on larval length: as length increased, optimal VR decreased. Total selection for VR was a combination of direct selection and an indirect effect of selection acting on a correlated trait, the ratio of precaudal to caudal length. Direct and indirect selection were in opposing directions at a given larval length. Variation in vertebral number may be maintained in populations partly because the strength of selection is reduced by opposing directions between direct and indirect selection, and between total selection at different larval lengths.  相似文献   
96.
Overuse of molluscicides by farmers in arable systems can lead to environmental and product contamination. Here we assess a simple and inexpensive surface trapping method for monitoring populations of slugs (Deroceras reticulatum and Arion intermedius). This method was biased against small slugs, and against A. intermedius, when compared to direct soil sampling. Regression was used to model the relationship between the results of surface trapping and soil sampling methods. Spatial Analysis by Distance IndicEs (SADIE) algorithms were used to describe the spatial relationships between the two sets of samples. Using both traditional statistical methods and spatial statistics, the spatial information collected from surface traps was sufficient to identify patches and gaps in slug numbers and possibly to allow the spot application of slug control, and thus provide land managers who experience slug damage with a way of reducing molluscicides use, whilst maintaining slug control. Further improvements and applications of the model are discussed.  相似文献   
97.
The species–time relationship (STR) is a macroecological pattern describing the increase in the observed species richness with the length of time censused. Understanding STRs is important for understanding the ecological processes underlying temporal turnover and species richness. However, accurate characterization of the STR has been hampered by the influence of sampling. I analysed STRs for 521 breeding bird survey communities. I used a model of sampling effects to demonstrate that the increase in richness was not due exclusively to sampling. I estimated the time scale at which ecological processes became dominant over sampling effects using a two‐phase model combining a sampling phase and either a power function or logarithmic ecological phase. These two‐phase models performed significantly better than sampling alone and better than simple power and logarithmic functions. Most community dynamics were dominated by ecological processes over scales <5 years. This technique provides an example of a rigorous, quantitative approach to separating sampling from ecological processes.  相似文献   
98.
Abstract Efficient and accurate vegetation sampling techniques are essential for the assessment of wetland restoration success. Remotely acquired data, used extensively in many locations, have not been widely used to monitor restored wetlands. We compared three different vegetation sampling techniques to determine the accuracy associated with each method when used to determine species composition and cover in restored Pacific coast wetlands dominated by Salicornia virginica (perennial pickleweed). Two ground‐based techniques, using quadrat and line intercept sampling, and a remote sensing technique, using low altitude, high resolution, color and color infrared photographs, were applied to estimate cover in three small restoration sites. The remote technique provided an accurate and efficient means of sampling vegetation cover, but individual species could not be identified, precluding estimates of species density and distribution. Aerial photography was determined to be an effective tool for vegetation monitoring of simple (i.e., single‐species) habitat types or when species identities are not important (e.g., when vegetation is developing on a new restoration site). The efficiency associated with these vegetation sampling techniques was dependent on the scale of the assessment, with aerial photography more efficient than ground‐based sampling methods for assessing large areas. However, the inability of aerial photography to identify individual species, especially mixed‐species stands common in southern California salt marshes, limits its usefulness for monitoring restoration success. A combination of aerial photography and ground‐based methods may be the most effective means of monitoring the success of large wetland restoration projects.  相似文献   
99.
The population genetic structure of the butterfly Melitaea didyma was studied along the northern distribution range border in Central Germany by means of allozyme electrophoresis. Individuals were sampled from a total of 21 habitat patches from four regions, and two provinces. Sampling was designed to estimate local vs. regional differentiation. High levels of variability were found, H e= 0.14–0.21. The mean expected sample heterozygosity from one region, Mosel, was significantly lower than from the Hammelburg region, H e= 0.17 and 0.19, respectively. Two hierarchical levels of genetic differentiation were found. Within regions individuals sampled from different patches behaved as belonging to one population with high levels of gene flow (Hammelburg F ST= 0.015, Mosel F ST= 0.044), though local isolation barriers did create a substructuring of these populations. The inbreeding coefficients, F IS, were constant over all sample levels, suggesting a similar distribution of habitat patches within regions. Between regions gene flow was limited. An isolation by distance analysis indicated that the hierarchical structure, at the provincial level, may be breaking down due to isolation of regional populations. A more general observation was that the sampling design may greatly have influenced the estimation of genetic differentiation. Depending on which samples were included, overall F ST estimates ranged from 0.059–0.090.  相似文献   
100.
本文给出了两阶抽样中总体均值的比率型估计量的平均精度,它当样本容量充分大时主项不劣于无偏估计量的平均精度.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号