首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   2篇
  2023年   1篇
  2022年   2篇
  2019年   1篇
  2018年   6篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   5篇
  2013年   7篇
  2012年   2篇
  2011年   4篇
  2010年   5篇
  2009年   6篇
  2008年   4篇
  2007年   5篇
  2006年   6篇
  2005年   6篇
  2004年   7篇
  2003年   1篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   3篇
  1997年   3篇
  1996年   5篇
  1995年   6篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1984年   1篇
排序方式: 共有101条查询结果,搜索用时 31 毫秒
81.
Cell volume can be altered by two different ways, swelling and shrinkage. Cell swelling is regulated by volume-regulated Cl channel (VRC). It is not well understood whether shrinkage is regulated by VRC. We previously found that antisense oligonucleotide specific to ClC-3 (ClC-3 antisense) prevented cell proliferation, which was related to cell swell volume regulation. In the present study, we further studied the role of ClC-3 Cl channel in cell apoptosis which was related to cell shrinkage volume regulation by using antisense oligonucleotide specific to ClC-3 (ClC-3 antisense) and ClC-3 cDNA transfection techniques. We found that thapsigargin (TG), a specific inhibitor of the endoplasmic reticulum calcium ATPase, evoked apoptotic morphological changes (including cytoplasmic blebbing, condensation of nuclear chromatin, and the formation of apoptotic bodies), DNA laddering, and caspase-3 activation in PC12 cells (Pheochromocytoma-derived cell line). TG increased the cell apoptotic population with a decrease in cell viability. These effects were consistent with the decrease in endogenous ClC-3 protein expression, which was also induced by TG. Overexpression of ClC-3 significantly inhibited TG effect on PC12 cell apoptosis, whereas the ClC-3 antisense produced opposite effects and facilitated apoptosis induced by TG. Our data strongly suggest that ClC-3 channel in PC12 cells mediates TG-induced apoptotic process through inhibitory mechanism. Thus, it appears that ClC-3 Cl channel mediates both cell proliferation and apoptosis through accelerative and inhibitory fashions, respectively. These authors contributed equally to this work.  相似文献   
82.
The prostate-apoptosis-response-gene-4 (Par-4) protein has been shown to function as an effector of cell death in response to various apoptotic stimuli that trigger mitochondria and membrane receptor-mediated cell death pathways. We found that overexpressing Par-4 by stable transfection sensitizes Caki cells to induction of apoptosis by TRAIL and drugs that induce endoplasmic reticulum (ER) stress [thapsigargin (TG), tunicamycin (TU) and etoposide]. Ectopic expression of Par-4 is associated with decreased levels of XIAP protein in TG-treated cells, caused in part by XIAP protein instability and caspase activation. Levels of phospho-Akt are decreased in Caki/Par-4 cells to a significantly greater extent than in Caki/Vector cells by treatment with TG, and this is in turn associated with decreased levels of phospho-PDK1, the kinase upstream of Akt. In conclusion, we provide evidence that ectopic expression of Par-4 sensitizes Caki cells to TG and that XIAP protein instability and inactivation of Akt are important in cellular pathways affected by Par-4.  相似文献   
83.
The Ca2+ transport ATPase of intracellular membranes (SERCA) can be inhibited by a series of chemical compounds such as Thapsigargin (TG), 2,5-di(tert-butyl)hydroquinone (DBHQ) and 1,3-dibromo-2,4,6-tris (methyl-isothio-uronium) benzene (Br2-TITU). These compounds have specific binding sites in the ATPase protein, and different mechanisms of inhibition. On the other hand, SERCA gene silencing offers a convenient and specific method for suppression of SERCA activity in cells. The physiological and pharmacological implications of SERCA inhibition are discussed.  相似文献   
84.
Summary Using thapsigargin (Tg), an agent that mobilizes calcium by directly emptying intracellular stores, we previously showed that intracellular calcium may play an important role in the regulation of intercellular adhesion molecule (ICAM)-1 gene expression induced by cytokines in human airway smooth muscle (ASM) cells. In the present study, we extended this previous observation by comparing the effect of Tg and other calcium-mobilizing G-protein-coupled receptor (GPCR) agonists on the expression of different pro-inflammatory genes in response to tumor necrosis factor (TNF)-α in ASM cells. We found that in resting cells, Tg (10–100 nM) or the bradykinin (BK) (1–10 μM) and thrombin (Thr) (1 U/ml) stimulated interleukin (IL)-6 secretion but had no effect on regulated on activation, normal T cells expressed and secreted (RANTES) levels. More importantly, such calcium-mobilizing agents significantly enhanced TNF-α-induced IL-6 secretion while RANTES secretion was abrogated. The use of luciferase-tagged IL-6 and RANTES promoter constructs demonstrated similar effects of Tg on IL-6 and RANTES genes in basal and TNF-α-stimulated conditions. The cyclic adenosine monophosphate (cAMP)-dependent pathway plays a minor role in this differential regulation of IL-6 and RANTES genes expression. 2-Aminoethoxydiphenyl borate (APB), a blocker of store-operated calcium channels (SOCs), and bisindolylmaleimide I (Bis I), a broad-spectrum protein kinase C (PKC) inhibitor, inhibited the basal and synergic effects of IL-6 secretion in response to calcium-mobilizing agents and TNF-α, but did not prevent the abrogated effect of RANTES secretion. We also found that Go-6976, a selective calcium-dependent PKC isozyme inhibitor, did not inhibit IL-6 secretion in response to GPCR agonist and TNF-α; whereas Rottlerlin, a PKC-δ inhibitor, inhibited both Thr- and TNF-α-induced expression of IL-6, while BK-induced IL-6 secretion was not affected. Interestingly, TNF-α-induced interferon regulatory factor (IRF)-1 activation was significantly inhibited by all calcium-mobilizing agents, BK, Thr and Tg. These results show that calcium-mobilizing GPCR agonists functionally interact with TNF-α to differentially regulate pro-inflammatory genes expression in human ASM cells, possibly by involving Tg-sensitive intracellular calcium stores, SOC and PKC.  相似文献   
85.
Paula S  Ball WJ 《Proteins》2004,56(3):595-606
Thapsigargin (TG) is a potent and commonly used inhibitor of the ion transport activity of sarco/endoplasmic reticulum Ca2+-ATPases (SERCA). Based on the recently published crystal structures of rabbit muscle SERCA1a in the Ca2+/E1 (E1) and TG/E2 (E2) conformations, we performed computational docking studies to characterize the molecular interactions that govern binding of TG and TG-analogs by the enzyme. Using the program GOLD (genetic optimization for ligand docking) in combination with the scoring function ChemScore, TG was docked into the binding site of the E1 and E2 conformations of SERCA1a. The docking results revealed a consensus ligand-binding mode consistent with the crystal structure and showed that hydrophobic interactions are the primary driving force of TG binding by SERCA. Moreover, it was shown that the conformational changes accompanying the E2 to E1 transition in the enzyme likely displace TG from its favored orientation in the binding site, thereby substantially reducing its binding affinity. This finding illustrates on the molecular level how TG may exert its inhibitory effect in binding tightly to the E2 form and preventing it from converting into its E1 form, a requirement for catalytic function. We also docked 9 TG analogs into the E2 conformation of the enzyme. Eight of the analogs adopted a binding mode very similar to that of TG, whereas one compound preferred a different orientation in the binding site. Analysis of the predicted binding affinities showed a good correlation with the experimentally observed inhibitory potencies of the analogs. Docking was also performed with several modeled mutants of SERCA1a, whose phenylalanine residue in position 256 (Phe256) had been modified. The experimentally observed declines in TG sensitivity in most of the Phe256 mutants was qualitatively accounted for and appears, at least in part, be due to a slightly altered TG-binding mode.  相似文献   
86.
87.
Calcium (Ca2+) plays an important role in angiogenesis, as it activates the cell migration machinery. Different proangiogenic factors have been demonstrated to induce transient Ca2+ increases in endothelial cells. This has raised interest in the contribution of Ca2+ channels to cell migration, and in a possible use of channel-blocking compounds in angiogenesis-related pathologies. We have investigated the ability of erythropoietin (Epo), a cytokine recently involved in angiogenesis, to induce Ca2+ influx through different types of membrane channels in EA.hy926 endothelial cells. The voltage-dependent Ca2+ channel antagonists amlodipine and diltiazem inhibited an Epo-triggered transient rise in intracellular Ca2+, similarly to a specific inhibitor (Pyr3) and a blocking antibody against the transient potential calcium channel 3 (TRPC3). Unlike diltiazem, amlodipine and the TRPC3 inhibitors prevented the stimulating action of Epo in cell migration and in vitro angiogenesis assays. Amlodipine was also able to inhibit an increase in endothelial cell migration induced by Epo in an inflammatory environment generated with TNF-α. These results support the participation of Ca2+ entry through voltage-dependent and transient potential channels in Epo-driven endothelial cell migration, highlighting the antiangiogenic activity of amlodipine.  相似文献   
88.
89.
The incidence of type 2 diabetes, the most common cause of diabetic retinopathy (DR), is rapidly on the rise in developed countries due to overconsumption of calorie rich diets. Using an animal model of diet-induced obesity/pre-diabetes, we evaluated the impact of a diet high in saturated fat (HFD) on O-GlcNAcylation of retinal proteins, as dysregulated O-GlcNAcylation contributes to diabetic complications and evidence supports a role in DR. Protein O-GlcNAcylation was increased in the retina of mice fed a HFD as compared to littermates receiving control chow. Similarly, O-GlcNAcylation was elevated in retinal Müller cells in culture exposed to the saturated fatty acid palmitate or the ceramide analog Cer6. One potential mechanism responsible for elevated O-GlcNAcylation is increased flux through the hexosamine biosynthetic pathway (HBP). Indeed, inhibition of the pathway's rate-limiting enzyme glutamine-fructose-6-phosphate amidotransferase (GFAT) prevented Cer6-induced O-GlcNAcylation. Importantly, expression of the mRNA encoding GFAT2, but not GFAT1 was elevated in both the retina of mice fed a HFD and in retinal cells in culture exposed to palmitate or Cer6. Notably, expression of nuclear receptor subfamily 4 group A member 1 (NR4A1) was increased in the retina of mice fed a HFD and NR4A1 expression was sufficient to promote GFAT2 mRNA expression and O-GlcNAcylation in retinal cells in culture. Whereas palmitate or Cer6 addition to culture medium enhanced NR4A1 and GFAT2 expression, chemical inhibition of NR4A1 transactivation repressed Cer6-induced GFAT2 mRNA expression. Overall, the results support a model wherein HFD increases retinal protein O-GlcNAcylation by promoting NR4A1-dependent GFAT2 expression.  相似文献   
90.
《Free radical research》2013,47(6):692-698
Abstract

It has been reported that tubular cells suffer an endoplasmic reticulum (ER) stress during the development of chronic kidney disease, which is a potent risk factor of cardiovascular disease. Moreover, under these conditions, reactive oxygen species are generated and induce cell injury. Extracellular-superoxide dismutase (EC-SOD) is a member of SODs and protects the cells from oxidative stress. Here, it is demonstrated that thapsigargin, an ER stress inducer, decreased EC-SOD expression, whereas the expression of Cu,Zn-SOD and Mn-SOD was not changed. On the other hand, another ER stress inducer, tunicamycin, did not affect the expression of EC-SOD. Further, it was shown that thapsigargin has the ability to activate extracellular-signal regulated kinase (ERK), but tunicamycin does not. Moreover, pre-treatment with U0126, an inhibitor of mitogen-activated protein kinase kinase (MEK)/ERK, suppressed thapsigargin-triggered EC-SOD reduction, suggesting that MEK/ERK signalling should play an important role in the regulation of EC-SOD in COS7 cells under ER stress conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号