首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   3篇
  2022年   1篇
  2019年   1篇
  2018年   7篇
  2017年   1篇
  2014年   7篇
  2013年   3篇
  2012年   2篇
  2011年   7篇
  2010年   6篇
  2009年   8篇
  2008年   6篇
  2007年   7篇
  2006年   6篇
  2005年   4篇
  2004年   3篇
  2003年   1篇
  2000年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
排序方式: 共有75条查询结果,搜索用时 15 毫秒
41.
Mitochondria play central roles in cell life as a source of energy and in cell death by inducing apoptosis. Many important functions of mitochondria change in cancer, and these organelles can be a target of chemotherapy. The widely used anticancer drug doxorubicin (DOX) causes cell death, inhibition of cell cycle/proliferation and mitochondrial impairment. However, the mechanism of such impairment is not completely understood. In our study we used confocal and two-photon fluorescence imaging together with enzymatic and respirometric analysis to study short- and long-term effects of doxorubicin on mitochondria in various human carcinoma cells. We show that short-term (< 30 min) effects include i) rapid changes in mitochondrial redox potentials towards a more oxidized state (flavoproteins and NADH), ii) mitochondrial depolarization, iii) elevated matrix calcium levels, and iv) mitochondrial ROS production, demonstrating a complex pattern of mitochondrial alterations. Significant inhibition of mitochondrial endogenous and uncoupled respiration, ATP depletion and changes in the activities of marker enzymes were observed after 48 h of DOX treatment (long-term effects) associated with cell cycle arrest and death.  相似文献   
42.
43.
Functional biochemical tests are the gold standard for the diagnosis of mitochondria-related diseases. However, the availability of the biological samples from patients' tissues represents a severe limitation to the number of screenable enzymatic activities. In this study we developed a fluorescent probe-assisted microscopy protocol enabling to assess the ΔΨm-generating capacity by mitochondria immobilized on a glass surface at the single organelle resolution-level. The advantage of this assay over others is to scale-down the amount of the biological sample required to test in a short time the functional activity of all the components of the oxidative phosphorylation system without loss of accuracy. Furthermore, the distribution of a given enzymatic activity can also be evaluated within the mitochondrial population enabling to measure the level of functional heterogeneity of the respiratory chain dysfunction.  相似文献   
44.
Recently, we have isolated and characterized remarkable antimicrobial peptides (AMPs) from the venom reservoirs of wild bees. These peptides (melectin, lasioglossins, halictines and macropin) and their analogs display high antimicrobial activity against Gram-positive and -negative bacteria, antifungal activity and low or moderate hemolytic activity. Here we describe cytotoxicity of the above-mentioned AMPs and some of their analogs toward two normal cell lines (human umbilical vein endothelial cells, HUVEC, and rat intestinal epithelial cells, IEC) and three cancer cell lines (HeLa S3, CRC SW 480 and CCRF-CEM T). HeLa S3 cells were the most sensitive ones (concentration causing 50% cell death in the case of the most toxic analogs was 2.5-10 μM) followed by CEM cells. For the other cell lines to be killed, the concentrations had to be four to twenty times higher. These results bring promising outlooks of finding medically applicable drugs on the basis of AMPs. Experiments using fluorescently labeled lasioglossin III (Fl-VNWKKILGKIIKVVK-NH(2)) as a tracer confirmed that the peptides entered the mammalian cells in higher quantities only after they reached the toxic concentration. After entering the cells, their concentration was the highest in the vicinity of the nucleus, in the nucleolus and in granules which were situated at very similar places as mitochondria. Experiments performed using cells with tetramethylrhodamine labeled mitochondria showed that mitochondria were fragmented and lost their membrane potential in parallel with the entrance of the peptides into the cell and the disturbance of the cell membrane.  相似文献   
45.
Mitochondria-targeted antioxidant 10-(6-plastoquinonyl)decyltriphenyl-phosphonium (SkQ1) as well as insulin and the inhibitor of glycogen-synthase kinase, Li(+) are shown to (i) protect renal tubular cells from an apoptotic death and (ii) diminish mitochondrial fission (the thread-grain transition) induced by ischemia/reoxygenation. However, SkQ1 and LiCl protected the mitochondrial reticulum of skin fibroblasts from ultraviolet-induced fission but were ineffective in preventing a further cell death. This means that mitochondrial fission is not essential for apoptotic cascade progression.  相似文献   
46.
A modified version of fluorescence correlation spectroscopy (FCS) closely related to the photon counting histogram (PCH) method, which is used in the case of a mixture of molecules with similar diffusion coefficients, was applied here for analyzing the binding of the potential-sensitive dye tetramethylrhodamine ethyl ester, TMRE, to isolated mitochondria both in energized and deenergized states. Fluorescence time traces of suspensions of TMRE-doped mitochondria representing sequences of peaks of different intensity appeared to be similar to those of fluorescent beads and TMRE-doped latex particles. The experimental data were obtained under stirring conditions which increased the number of events by about three orders of magnitude thus substantially enhancing the resolution of the method. The statistics of the brightness of identical fluorescent particles reflecting their random walk through the confocal volume was described by a simple analytical equation which enabled us to perform the peak intensity analysis (PIA) of TMRE-doped mitochondria. The validity of PIA was tested with fluorescent beads of different sizes and TMRE-doped latex particles. Mitochondrial energization in the presence of TMRE led to the increase in the number and the intensity of the peaks in fluorescence time traces, the PIA of which allowed us to determine mitochondrial membrane potential and additionally a number of mitochondrial particles per ml of the suspension. The value of the membrane potential on a single mitochondrion was estimated to be about 180 mV in agreement with the data related to mitochondrial suspensions. Importantly, the PIA method required less than 1 microgram of mitochondrial protein per measurement.  相似文献   
47.
The rat gamma-aminobutyric acid transporter GAT1 expressed in Xenopus oocytes was labeled at Cys74, and at one or more other sites, by tetramethylrhodamine-5-maleimide, without significantly altering GAT1 function. Voltage-jump relaxation analysis showed that fluorescence increased slightly and monotonically with hyperpolarization; the fluorescence at -140 mV was approximately 0. 8% greater than at +60 mV. The time course of the fluorescence relaxations was mostly described by a single exponential with voltage-dependent but history-independent time constants ranging from approximately 20 ms at +60 mV to approximately 150 ms at -140 mV. The fluorescence did not saturate at the most negative potentials tested, and the midpoint of the fluorescence-voltage relation was at least 50 mV more negative than the midpoint of the charge-voltage relation previously identified with Na(+) binding to GAT1. The presence of gamma-aminobutyric acid did not noticeably affect the fluorescence waveforms. The fluorescence signal depended on Na(+) concentration with a Hill coefficient approaching 2. Increasing Cl(-) concentration modestly increased and accelerated the fluorescence relaxations for hyperpolarizing jumps. The fluorescence change was blocked by the GAT1 inhibitor, NO-711. For the W68L mutant of GAT1, the fluorescence relaxations occurred only during jumps to high positive potentials, in agreement with previous suggestions that this mutant is trapped in one conformational state except at these potentials. These observations suggest that the fluorescence signals monitor a novel state of GAT1, intermediate between the E*(out) and E(out) states of Hilgemann, D.W., and C.-C. Lu (1999. J. Gen. Physiol. 114:459-476). Therefore, the study provides verification that conformational changes occur during GAT1 function.  相似文献   
48.
Usnic acid (UA), an old antibiotic and one of the first described mitochondrial uncouplers, has demonstrated many beneficial activities, such as antimicrobial, antiviral, antitumour and anti-inflammatory properties. Here, we performed a thorough investigation of effects of usnic acid and its analogues on artificial planar bilayer lipid membrane (BLM), rat liver mitochondria and bacteria. Surprisingly enough, all of the three hydroxyl groups of UA appeared to be involved in its proton-shuttling activity on BLM. We ascribed this fact to an ability of UA to form complexes with calcium ions, aiding it in cycling protons across the membrane. Actually, the addition of calcium ions markedly stimulated the UA-induced electrical current across BLM. By using the calcium ionophore A23187, we proved the involvement of calcium ions in the UA uncoupling action on isolated rat liver mitochondria. The calcium-chelating property of UA was demonstrated here by the method of extracting metal ions into a hydrophobic phase. Modification of any of the hydroxyl groups in UA dramatically reduced not only the UA-induced current across BLM and the UA-mediated calcium extraction, but also the uncoupling activity of UA in mitochondria and the inhibiting effect of UA on the growth of Bacillus subtilis. The ability of UA to cause dissipation of membrane potential in isolated liver mitochondria and bacterial cells was shown here for the first time. In view of the data obtained, the protonophoric activity of UA is considered to make a significant contribution to its antibacterial action.  相似文献   
49.
Oxysterols result from cholesterol by enzymatic or oxidative processes. Some exert cytotoxic effects leading to necrosis or apoptosis. Detoxification of these compounds mainly occurs in the liver and requires transport from peripheral tissues towards it. Some ATP-binding cassette transporters are involved in export of cytotoxic compounds. In the current study, we investigated whether ABC transporter family member G1 (ABCG1) may be involved in oxysterol transport, since its gene expression is highly responsive to oxysterol loading. TetOff HeLa cells stably expressing ABCG1 showed decreased mass uptake of 7beta-hydroxycholesterol (7beta-HC) whereas that of other physiologically relevant oxysterols was unaffected. Application of 7beta-HC to ABCG1 expressing cells induced hyperpolarization of mitochondrial membrane potential and production of reactive oxygen species, indicating energy consumption by the ATP-binding cassette transporter when it is activated by its correct substrate. Our study points to detoxification as one of potential cellular functions of ABCG1. We assume that ABCG1 protects against 7beta-HC-induced cell death, an important role in prevention of neurodegenerative and cardiovascular disease.  相似文献   
50.
The mechanism by which tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces death is the subject of intense scrutiny due to its preferential targeting of transformed cells for deletion. Based on recent findings that the TRAIL-dependent death inducing signaling complex (DISC) forms and signals at the plasma membrane without being internalized, we investigated the possibility that agents that prevent endocytosis may stabilize the surface bound DISC and thereby enhance TRAIL-dependent signaling. We utilized phenylarsine oxide (PAO), a trivalent arsenical that has been reported to inhibit endocytosis and to induce mitochondrial permeability transition. Therefore PAO could, by two separate and independent activities, enhance TRAIL-induced killing. Paradoxically, we found that rather than synergizing with TRAIL, PAO was an effective inhibitor of TRAIL-induced killing. Recruitment of FADD and caspase-8 to the TRAIL-dependent DISC was diminished in a concentration-dependent manner in cells exposed to PAO. The effects of PAO could not be reversed by washing cells under non-reducing conditions, suggesting covalent linkage of PAO with its cellular target(s); however, 2,3-dimercaptoethanol effectively overcame the inhibitory action of PAO and restored sensitivity to TRAIL-induced apoptosis. PAO inhibited formation of the TRAIL-dependent DISC and therefore prevented all subsequent apoptotic events.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号