首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34659篇
  免费   2888篇
  国内免费   1044篇
  2023年   476篇
  2022年   656篇
  2021年   1120篇
  2020年   1333篇
  2019年   1698篇
  2018年   1441篇
  2017年   964篇
  2016年   956篇
  2015年   1256篇
  2014年   2044篇
  2013年   2200篇
  2012年   1251篇
  2011年   1677篇
  2010年   1197篇
  2009年   1574篇
  2008年   1682篇
  2007年   1629篇
  2006年   1612篇
  2005年   1409篇
  2004年   1220篇
  2003年   1020篇
  2002年   902篇
  2001年   665篇
  2000年   616篇
  1999年   460篇
  1998年   513篇
  1997年   494篇
  1996年   522篇
  1995年   506篇
  1994年   485篇
  1993年   433篇
  1992年   448篇
  1991年   382篇
  1990年   376篇
  1989年   329篇
  1988年   286篇
  1987年   286篇
  1986年   236篇
  1985年   284篇
  1984年   275篇
  1983年   144篇
  1982年   247篇
  1981年   198篇
  1980年   183篇
  1979年   181篇
  1978年   116篇
  1977年   115篇
  1976年   108篇
  1973年   80篇
  1972年   60篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
《Cell》2021,184(26):6281-6298.e23
  1. Download : Download high-res image (193KB)
  2. Download : Download full-size image
  相似文献   
12.
S20Y murine neuroblastoma cells appear to express a protein component(s) able to adhere specifically to the oligosaccharide portion of GM1 (oligo-GM1). To identify proteins with which the oligo-GM1 becomes closely associated, a radiolabeled (125I), photoactivatable derivative of oligo-GM1 was prepared. This was accomplished by reductive amination of the glucosyl moiety of oligo-GM1 to 1-deoxy-1-aminoglucitol, followed by reaction of the amine with sulfosuccinimidyl 2-(p-azidosalicylamido)ethyl-1,3'-dithiopropionate (SASD). Crosslinking studies using the photoactivatable probe indicated that it came in close proximity to a protein with an apparent molecular mass of approximately 71 kDa. In competition experiments, as little as a 10-fold molar excess of oligo-GM1 resulted in a selective reduction in labeling of this protein; preincubation with a 200-fold molar excess of siayllactose was necessary to observe the same change in the labeling pattern, lending additional support to the hypothesis that the approximately 71-kDa protein specifically associates with oligo-GM1. Cell surface location of the oligo-GM1 binding protein was confirmed using subcellular fractionation and morphological analyses.  相似文献   
13.
《Cell reports》2020,30(4):1052-1062.e5
  1. Download : Download high-res image (154KB)
  2. Download : Download full-size image
  相似文献   
14.
15.
MiR-204 is expressed in vascular smooth muscle cells (VSMC). However, its role in VSMC contraction is not known. We determined if miR-204 controls VSMC contractility and blood pressure through regulation of sarcoplasmic reticulum (SR) calcium (Ca2+) release. Systolic blood pressure (SBP) and vasoreactivity to VSMC contractile agonists (phenylephrine (PE), thromboxane analogue (U46619), endothelin-1 (ET-1), angiotensin-II (Ang II) and norepinephrine (NE) were compared in aortas and mesenteric resistance arteries (MRA) from miR-204−/− mice and wildtype mice (WT). There was no difference in basal systolic blood pressure (SBP) between the two genotypes; however, hypertensive response to Ang II was significantly greater in miR-204−/− mice compared to WT mice. Aortas and MRA of miR-204−/− mice had heightened contractility to all VSMC agonists. In silico algorithms predicted the type 1 Inositol 1, 4, 5-trisphosphate receptor (IP3R1) as a target of miR-204. Aortas and MRA of miR-204−/− mice had higher expression of IP3R1 compared to WT mice. Difference in agonist-induced vasoconstriction between miR-204−/− and WT mice was abolished with pharmacologic inhibition of IP3R1. Furthermore, Ang II-induced aortic IP3R1 was greater in miR-204−/− mice compared to WT mice. In addition, difference in aortic vasoconstriction to VSMC agonists between miR-204−/− and WT mice persisted after Ang II infusion. Inhibition of miR-204 in VSMC in vitro increased IP3R1, and boosted SR Ca2+ release in response to PE, while overexpression of miR-204 downregulated IP3R1. Finally, a sequence-specific nucleotide blocker that targets the miR-204-IP3R1 interaction rescued miR-204-induced downregulation of IP3R1. We conclude that miR-204 controls VSMC contractility and blood pressure through IP3R1-dependent regulation of SR calcium release.  相似文献   
16.
Abstract Photoproduction of hydrogen, nitrogenase activity (acetylene reduction) and hydrogenase activity (methylene blue dye reduction) were studied in free and alginate immobilized whole cells of a purple non-sulfur photosynthetic bacterium Rhodobacter sphaeroides O.U. 001. Four-fold increase in hydrogen production, two-fold increase in nitrogenase activity and 1.2-fold increase in the hydrogenase activity were observed in immobilized cells compared to free cells. Effect of various inhibitors (CO and C2H2) and electron donor (H2) on the above three functions by free and immobilized cells has also been studied.  相似文献   
17.
The morphology of dissociated single cerebellar Purkinje cells obtained from wild-type P1 CD1 mice was assessed in the absence and in the presence of glia. A dedicated noninvasive technique based on optical microscopy was developed. Image processing algorithms were implemented to extract metrical features characterizing cell structure and dendritic arborization. The morphological features were analyzed in order to identify quantitative differences in Purkinje cell morphology due to interactions with astrocytes.  相似文献   
18.
《Cytokine》2015,73(2):224-225
Balanced regulation of cytokine secretion in T cells is critical for maintenance of immune homeostasis and prevention of autoimmunity. The Rho-associated kinase (ROCK) 2 signaling pathway was previously shown to be involved in controlling of cellular movement and shape. However, recent work from our group and others has demonstrated a new and important role of ROCK2 in regulating cytokine secretion in T cells. We found that ROCK2 promotes pro-inflammatory cytokines such as IL-17 and IL-21, whereas IL-2 and IL-10 secretion are negatively regulated by ROCK2 under Th17-skewing activation. Also, in disease, but not in steady state conditions, ROCK2 contributes to regulation of IFN-γ secretion in T cells from rheumatoid arthritis patients. Thus, ROCK2 signaling is a key pathway in modulation of T-cell mediated immune responses underscoring the therapeutic potential of targeted inhibition of ROCK2 in autoimmunity.  相似文献   
19.
Carbonic anhydrases (CAs) are a family of widely distributed metalloenzymes, involved in diverse physiological processes. These enzymes catalyse the reversible conversion of carbon dioxide to protons and bicarbonate. At least 19 genes encoding for CAs have been identified in the sea urchin genome, with one of these localized to the skeletogenic mesoderm (primary mesenchyme cells, PMCs). We investigated the effects of a specific inhibitor of CA, acetazolamide (AZ), on development of two sea urchin species with contrasting investment in skeleton production, Paracentrotus lividus and Heliocidaris tuberculata, to determine the role of CA on PMC differentiation, skeletogenesis and on non‐skeletogenic mesodermal (NSM) cells. Embryos were cultured in the presence of AZ from the blastula stage prior to skeleton formation and development to the larval stage was monitored. At the dose of 8 mmol/L AZ, 98% and 90% of P. lividus and H. tuberculata embryos lacked skeleton, respectively. Nevertheless, an almost normal PMC differentiation was indicated by the expression of msp130, a PMC‐specific marker. Strikingly, the AZ‐treated embryos also lacked the echinochrome pigment produced by the pigment cells, a subpopulation of NSM cells with immune activities within the larva. Conversely, all ectoderm and endoderm derivatives and other subpopulations of mesoderm developed normally. The inhibitory effects of AZ were completely reversed after removal of the inhibitor from the medium. Our data, together with new information concerning the involvement of CA on skeleton formation, provide evidence for the first time of a possible role of the CAs in larval immune pigment cells.  相似文献   
20.
Nucleus pulposus (NP) cells reside in a hypoxic environment in vivo, while the mechanisms of how NP cells maintain survival under hypoxia are not clear. Autophagy is an important physiological response to hypoxia and implicated in the survival regulation in most types of cells. This study was designed to investigate the role of autophagy in the survival of NP cells under hypoxia. We found that appropriate autophagy activity was beneficial to the survival of NP cells in serum deprivation, while excessive autophagy led to death of the NP cells. Hypoxia facilitated the survival of NP cells in serum deprivation by down-regulating excessive autophagy. Hypoxia down-regulated the autophagy activity of NP cells through restricting the production of reactive oxygen species (ROS) and inactivating the AMPK/mTOR signaling pathway, and possibly through a pathway involving HIF-1α. We believed that understanding the autophagy response of NP cells to hypoxia and its role in cell survival had important clinical significance in the prevention and treatment of degenerative discogenic diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号