首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   784篇
  免费   37篇
  国内免费   29篇
  2023年   7篇
  2022年   14篇
  2021年   19篇
  2020年   20篇
  2019年   32篇
  2018年   24篇
  2017年   13篇
  2016年   23篇
  2015年   19篇
  2014年   25篇
  2013年   47篇
  2012年   18篇
  2011年   17篇
  2010年   28篇
  2009年   31篇
  2008年   31篇
  2007年   23篇
  2006年   40篇
  2005年   51篇
  2004年   38篇
  2003年   32篇
  2002年   44篇
  2001年   31篇
  2000年   25篇
  1999年   17篇
  1998年   22篇
  1997年   22篇
  1996年   13篇
  1995年   8篇
  1994年   8篇
  1993年   7篇
  1992年   7篇
  1991年   4篇
  1990年   5篇
  1989年   5篇
  1988年   5篇
  1987年   7篇
  1986年   10篇
  1985年   7篇
  1984年   10篇
  1983年   5篇
  1982年   8篇
  1981年   5篇
  1980年   6篇
  1979年   7篇
  1978年   3篇
  1976年   3篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有850条查询结果,搜索用时 15 毫秒
61.
This study reports the anatomy, histology, and ultrastructure of the male Mullerian gland of the caecilian Uraeotyphlus narayani, based on dissections, light microscopic histological and histochemical preparations, and transmission electron microscopic observations. The posterior end of the Mullerian duct and the urinogenital duct of this caecilian join to form a common duct before opening into the cloaca. The boundary of the entire gland has a pleuroperitoneum, followed by smooth muscle fibers and connective tissue. The Mullerian gland is composed of numerous individual tubular glands separated from each other by connective tissue. Each gland has a duct, which joins the central Mullerian duct. The ducts of the tubular glands are also surrounded by abundant connective tissue. The tubular glands differ between the column and the base in regard to the outer boundary and the epithelial organization. The basement membrane of the column is so thick that amoeboid cells may not penetrate it, whereas that around the base of the gland is thin and appears to allow migration of amoeboid cells into and out of the basal aspect of the gland. The epithelium of the column has nonciliated secretory cells with basal nuclei and ciliated nonsecretory cells with apical nuclei. In the epithelium of the base there are secretory cells, ciliated cells, and amoeboid cells. The epithelium of ducts of the tubular glands is formed of ciliated dark cells and microvillated light cells. The epithelium of the central duct is formed of ciliated dark cells also possessing microvilli, ciliated light cells also possessing microvilli, and microvillated light cells that lack cilia. It is regressed during March to June when the testis lobes are in a state of quiescence. The Mullerian gland is active in secretion during July to February when the testis is active in spermatogenesis.  相似文献   
62.
Spermatogenesis is a complex process. Duringspermatogenesis, the production of sperm occurs withinthe testicular seminiferous tubules through three separatedphases. First of all, diploid germ cells, primitivespermatogonia, will self renew to amplify and producetypes A and B spermatogonia. Type B spermatogonia willdifferentiate into primary spermatocytes. Then, meioticdivisions of spermatocytes will produce round spermatids.Finally, after a series of biochemical and morphologicalchanges, sper…  相似文献   
63.
The mechanisms that control differentiation of stem cells to specialised cell types probably include factors intrinsic to stem cells as well as extrinsic factors produced by the microenvironment of the stem cell niche. The Drosophila male germline is renewed from a population of stem cells located in the apical tip of the adult testis. The morphological relationship between germline stem cells and their surrounding somatic cells is well understood but the factors that regulate stem cell proliferation and differentiation are still being uncovered. This study examined the effect of stimulating Dpp signalling directly in male germ cells. Ectopic Dpp or Activin signalling resulted in overproliferation of both stem cell-like and spermatogonial-like cells in the apical region of the testis. A third cell population that expressed stem cell markers was seen to proliferate in the distal testis when Dpp signalling was either stimulated or repressed in germline stem cells.  相似文献   
64.
65.
Germ cell transplantation in goats   总被引:19,自引:0,他引:19  
Transplantation of spermatogonial stem cells provides a unique approach for the study of spermatogenesis and manipulation of the male germ line. This technique may also offer an alternative to the currently inefficient methods of producing transgenic domestic animals. We have recently established the technique of spermatogonial transplantation, originally developed in laboratory rodents, in pigs, and this study was aimed to extend the technique to the goat. Isolated donor testis cells were infused into the seminiferous tubules of anesthetized recipient goats through an ultrasonographically-guided catheter inserted into the rete testis. Donor cells were obtained by enzymatic digestion of freshly collected testes from immature goats (either from the recipients' contralateral testis or from unrelated donors). Prior to transplantation, testis cells were labeled with a fluorescent marker to allow identification after transplantation. Recipient testes were examined for the presence and localization of labeled donor cells at 3-week intervals up to 12 weeks after transplantation. Labeled donor cells were found in the seminiferous tubules of all testes, comprising 10-35% of the examined tubules. Histological examination of the recipient testes did not reveal evident tissue damage, except for limited fibrotic changes at the site of needle insertion. Likewise there were no detectable local or systemic signs of immunologic reactions to the transplantations. These results indicate that germ cell transplantation is technically feasible in immature male goats and that donor-derived cells are retained in the recipient testis for at least three months and through puberty. This study represents the first report of germ cell transplantation in goats.  相似文献   
66.
Outer dense fibers (ODF) and the fibrous sheath (FS) are major cytoskeletal structures in the mammalian sperm tail. The molecular mechanisms underlying their morphogenesis along the axoneme or their function are poorly understood. Recently, we reported the cloning and characterization of Odf2, a major ODF protein, and Spag4, an axoneme-binding protein, by virtue of their strong interaction with Odf1, the 27 kDa major ODF protein. We proposed a crucial role for leucine zippers in molecular interactions during sperm tail morphogenesis. Here we report the cloning and characterization of a novel gene, Spag5, which encodes a 200 kDa testicular protein that interacts strongly with Odf1. Spag5 is transcribed and translated in pachytene spermatocytes and spermatids. It bears 73% similarity with the mitotic spindle protein Deepest of unknown function. We identified two putative leucine zippers in the C-terminal part of the Spag5 protein, the downstream one of which is involved in interaction with Odf1. Interestingly, these motifs are present in Deepest. These results highlight the importance of the leucine zipper in sperm tail protein interactions. Mol. Reprod. Dev. 59: 410-416, 2001.  相似文献   
67.
慢性镉负荷雄性大鼠的睾丸及生殖内分泌功能活动   总被引:18,自引:0,他引:18  
Chen L  Ren WH  Zhu SL  Gao W  Zhou J  Jiang YZ  Gu Y 《生理学报》2002,54(3):258-262
选择健康SD雄性成年大鼠60只,随机分成对照组(C组)、镉负荷中剂量组(M组)和镉负荷高剂量组(H组),每天分别饲喂含镉0,5,10mg/kg的大鼠全价饲料,连续6周,研究了镉负荷对大鼠睾丸及生殖内分泌功能活动的影响。结果显示:在整个实验期内,M和H组大鼠睾丸组织中的镉含量极明显上升,锌含量销有下降,与对照组差异不显著;血浆镉、锌含量虽分别表现稍有升高和下降,但与对照组比较无明显差异;H组睾丸精子头计数和每日精子生成量在镉负荷第3周极显著下降,第6周时,M和H组均极明显低于对照组;在整个实验期内,H组大鼠ALP活明显低于C组;LDH-X活性在M和H组大鼠均极明显低于C组;M和H组血浆T水平下降,均低于或显著低于C组;3组间的FSH和LH水平无明显差异。结果提示:慢性镉负荷在睾丸组织中逐步蓄积可引起睾丸一些酶活性改变、精子生成减少及内分泌功能活动低下。  相似文献   
68.
Vasa is a widely conserved germline marker, both in vertebrates and invertebrates. We identify a vasa orthologue, Sgvasa, and use it to study germline development in the grasshopper Schistocerca gregaria, a species in which no germ plasm has been identified. In adults, Sgvasa is specifically expressed in the ovary and testis. It is expressed at high levels during early oogenesis, but no detectable vasa RNA and little Vasa protein are present in mature unlaid eggs. None appears to be localized to any defined region of the egg cortex, suggesting that germline specification may not depend on maternal germ plasm expressing vasa. Vasa protein is expressed in most cleavage energids as they reach the egg surface and persists at high levels in most cells aggregating to form the embryonic primordium. However, after gastrulation, Vasa protein persists only in extraembryonic membranes and in cells at the outer margin of the late heart-stage embryo. In the embryo, it then become restricted to cells at the dorsal margin of the forming abdomen. In older embryos, these Vasa-positive cells move toward the midline; Vasa protein accumulates asymmetrically in their cytoplasm, a pattern closely resembling that of germ cells in late embryonic gonads. Thus, we suggest that the Vasa-stained cells in the abdominal margin are germ cells, as proposed by Nelson (1934), and not cardioblasts, as has been proposed by others.  相似文献   
69.
Recently, increasing importance has been attached to the role of estrogens and their receptors in male reproduction, since they have been found to be abundant in the male reproductive tract. In the lizard, Podarcis sicula, a seasonal breeder, estrogens seem to be involved in the regulation of testicular activity. Particularly, it has been hypothesized that the block of spermatogenesis and the complete regression of the epididymis and other secondary sexual characters (SSCs) in autumn might be due to high estrogen levels. To investigate the role of estrogens in the reproductive process of male lizards, we utilized Fadrozole ((AI) [4-(5,6,7,8-tetrahydroimidazole [1,5-a] pyridin-5-yl)-benzonitrile monohydrochloride] (CGS 16949A)), a nonsteroidal inhibitor of aromatase, the enzyme involved in the aromatization of androgens to estrogens, evaluating its effects on plasma sex-hormone release, spermatogenesis and epididymis morphology. For this purpose, adult male lizards, captured during the autumnal recrudescence, were intraperitoneally injected with 0.5 microg and 5 microg/g/body weight of AI for 15 and 30 days. In the animals treated with the higher AI dose, estrogen levels decreased if compared to the control groups, whereas androgen levels increased. Furthermore, histologic sections of testes and epididymes showed that the 30-day treatment with AI-induced spermatogenesis resumption with release of sperms into the large lumen of the seminiferous tubules, and the epididymes appeared more developed with moderately secreting columnar canal cells. Therefore, it is proposed that failure of spermatogenesis in autumn might be due to high estrogen levels.  相似文献   
70.
The recent cloning of a gonadotrophin-releasing hormone receptor (GnRH-R) cDNA from rainbow trout showed that it contains several in-frame ATG codons, one of which, ATG2, corresponds to that found in other species. However, an upstream codon, ATG1, could give rise to a protein with a larger extracellular domain. Using S1 nuclease assay and a method combining primer extension and RACE-PCR, we characterized a second population of mRNA, termed mRNA-2, with a distinct 5'untranslated region and lacking ATG1. The genomic origin of the two mRNAs was determined by establishing the complete gene structure, which shows, for the first time in a vertebrate species that an alternative splicing and promoter usage generate two GnRH-R mRNA variants whose 5' extremities are encoded by two different exons. The analysis of the tissue distribution indicated that mRNA-2 presents a broader pattern of expression and is detected at higher levels than mRNA-1. Interestingly, it was found that those two mRNAs are differentially expressed in male and female gonads during gametogenesis. In particular, the variations of mRNA-1 levels parallel those of sGnRH expression during spermatogenesis, indicating that tissue-specific processing of the GnRH-R mRNA may underlie the effects of GnRH as a paracrine/autocrine regulator of gonadal functions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号