首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   12篇
  国内免费   5篇
  113篇
  2024年   1篇
  2023年   3篇
  2022年   2篇
  2021年   1篇
  2020年   6篇
  2019年   5篇
  2018年   7篇
  2017年   5篇
  2016年   4篇
  2014年   6篇
  2013年   8篇
  2012年   5篇
  2011年   6篇
  2010年   4篇
  2009年   1篇
  2008年   6篇
  2007年   6篇
  2006年   4篇
  2005年   1篇
  2004年   5篇
  2003年   3篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   3篇
  1993年   2篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
  1983年   1篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
排序方式: 共有113条查询结果,搜索用时 11 毫秒
31.
We have previously reported neuroprotective properties of Ginkgo biloba/EGb 761® (EGb 761) in transient and permanent mouse models of brain ischemia. In a quest to extend our studies on EGb 761 and its constituents further, we used a model of transient global ischemia induced delayed hippocampal neuronal death and inflammation. Mice pretreated with different test drugs for 7 days were subjected to 8-min bilateral common carotid artery occlusion (tBCCAO) at day 8. After 7 days of reperfusion, mice brains were dissected out for TUNEL assay and immunohistochemistry. In situ detection of fragmented DNA (TUNEL staining) showed that out of all test drugs, only EGb 761 (13.6% ± 3.2) pretreatment protected neurons in the hippocampus against global ischemia (vs. vehicle, 85.1% ± 9.9; p < 0.05). Immunofluorescence-based studies demonstrated that pretreatment with EGb 761 upregulated the expression levels of heme oxygenase 1 (HO1), nuclear factor erythroid 2-related factor 2 (Nrf2), and vascular endothelial growth factor (VEGF) as compared to the vehicle group. In addition, increased number of activated astrocytes and microglia in the vehicle group was observed to be significantly lower in the EGb 761 pretreated group. Together, these results suggest that EGb 761 is a multifunctional neuroprotective agent, and the protection is in part associated with activation of the HO1/Nrf2 pathway, upregulation of VEGF and downregulation of inflammatory mediators such as astrocytes and microglia.  相似文献   
32.
Plant Terpenoids: Biosynthesis and Ecological Functions   总被引:7,自引:0,他引:7  
Among plant secondary metabolites terpenolds are a structurally most diverse group; they function as phytoalexins In plant direct defense, or as signals In Indirect defense responses which involves herbivores and their natural enemies. In recent years, more and more attention has been paid to the Investigation of the ecological role of plant terpenolds. The biosynthesis pathways of monoterpenes, sesquiterpenes, and diterpenes Include the synthesis of C5 precursor isopentenyl diphosphate (IPP) and Its allylic isomer dlmethylallyl dlphosphate (DMAPP), the synthesis of the immediate diphosphate precursors, and the formation of the diverse terpenoids. Terpene synthases (TPSs) play a key role In volatile terpene synthesis. By expression of the TPS genes, significant achievements have been made on metabolic engineering to Increase terpenoid production. This review mainly summarizes the recent research progress In elucidating the ecological role of terpenoids and characterization of the enzymes Involved in the terpenold biosynthesis. Spatial and temporal regulations of terpenoids metabolism are also discussed.  相似文献   
33.
檀香烯和檀香醇是名贵香料檀香精油的主要组成成分,具有较好的抗菌、抗氧化和抗肿瘤等药理活性。市售檀香精油主要从檀香树提取,但檀香树生长缓慢及培育难度大,檀香精油的提取率低,难以满足市场需求,导致檀香精油价格居高不下。利用基因工程及分子生物学手段,在微生物体内异源生物合成檀香烯和檀香醇是缓解这种供需矛盾的途径之一。文中对檀香烯和檀香醇合酶的研究现状,以及对宿主甲羟戊酸代谢路径的改造进行总结,并提出利用蛋白质工程技术对檀香烯合酶进行定向改造的思路,为檀香烯和檀香醇的生物合成优产研究提供参考。  相似文献   
34.
During the process of terpene biosynthesis, C–C bond breaking and forming steps are subjected to kinetic carbon isotope effects, leading to distinct carbon isotopic signatures of the products. Accordingly, carbon isotopic signatures could be used to reveal the ‘biosynthetic history’ of the produced terpenoids. Five known sesquiterpene cyclases, regulating three different pathways, representing simple to complex biosynthetic sequences, were heterologously expressed and used for in vitro assays with farnesyl diphosphate as substrate. Compound specific isotope ratio mass spectrometry measurements of the enzyme substrate farnesyl diphosphate (FDP) and the products of all the five cyclases were performed. The calculated δ13C value for FDP, based on δ13C values and relative amounts of the products, was identical with its measured δ13C value, confirming the reliability of the approach and the precision of measurements. The different carbon isotope ratios of the products reflect the complexity of their structure and are correlated with the frequency of carbon–carbon bond forming and breaking steps on their individual biosynthetic pathways. Thus, the analysis of carbon isotopic signatures of terpenes at natural abundance can be used as a powerful tool in elucidation of associated biosynthetic mechanisms of terpene synthases and in future in vivo studies even without ‘touching’ the plant.  相似文献   
35.
The seasonal pattern of terpene content and emission by seven Mediterranean woody species was studied under field conditions. Emission rates were normalized at 30°C and 1000 μmol·m·s PFD (photosynthetic photon flux density). Bupleurum fruticosum, Pinus halepensis, and Cistus albidus stored large amounts of terpenes (0.01-1.77% [dry matter]) with maximum values in autumn and minimum values in spring. They emitted large amounts of terpenes (2-40 μg·g DM·h), but with no clear seasonal trend except for Cistus albidus, which had maximum values in spring and minimum values in autumn. The nonstoring species Arbutus unedo, Erica arborea, Quercus coccifera and Quercus ilex also emitted large amounts of terpenes (0-40 μg·g DM·h) and also tended to present maximum emission rates in spring, although this trend was significant only for A. unedo. At the seasonal scale, emission rates did not follow changes in photosynthetic rates; instead, they mostly followed changes in temperature. From autumn to spring, the least volatile monoterpenes such as limonene were emitted at highest rates, whereas the most volatile monoterpenes such as α-pinene and β-pinene were the most emitted in summer. The monoterpene emission rates represented a greater percentage of the photosynthetic carbon fixation in summer (from 0.51% in Arbutus unedo to 5.64% in Quercus coccifera) than in the rest of the seasons. All these seasonality trends must be considered when inventorying and modeling annual emission rates in Mediterranean ecosystems.  相似文献   
36.
The Cunila angustifolia essential oil was obtained from fresh leaves by hydrodistillation and analyzed by GC‐FID and GC‐MS to determine its chemical composition. The essential oil presented pulegone (29.5 %) and isomenthol (27.0 %) as major components, and other compounds such as menthone (8.6 %), neomenthol (7.2 %), menthyl acetate (2.5 %) and caryophyllene oxide (2.0 %) were identified. The cytotoxic activity of the essential oil was evaluated by MTS assay, with the human cancer cell lines of the lung (A549), breast (MCF‐7) and skin melanoma (SK‐Mel‐28). The assay showed the highest selectivity, to MCF‐7 cell lines, with IC50 equal to 34.0 μg mL?1, low selectivity for SK‐Mel‐28 cell lines, with IC50 equal to 279.9 μg mL?1, and no mortality to A549 cell lines.  相似文献   
37.
A reinvestigation of the aerial parts of E. conyzoides L. afforded three new 5-methyl coumarins and a degraded nor compound with an eucarvone part. The structures were elucidated using spectral methods and some chemical transformations. The biogenetic relationships of these compounds are discussed.  相似文献   
38.
Bacteria, yeasts and filamentous fungi were screened for enantio-specific reduction of the α, β-unsaturated carbon bond in citral to produce citronellal. While a traditional aqueous screening system revealed only Zymomonas mobilis as positive, citronellal was produced in an aqueous/organic two liquid phase system by 11 of the 46 tested strains, which demonstrates the relevance of applying two-phase systems to screening strategies. Z. mobilis and Citrobacter freundii formed 1 mM citronellal in 3 h in the presence of a NADPH regenerating system and 20% (v/v) toluene. In comparison to these bacteria, the eukaryotic strains showed at least five-fold lower citral reductase activities. The bacterial strains produced preferentially the (S)-enantiomer of citronellal with e.e. values of >99% for Z. mobilis and 75% for Citrobacter freundii. In contrast the yeasts produced preferentially (R)-citronellal, i.e. Candida rugosa with an enantiomeric excess value of more than 98%. Many strains formed alcoholic by-products, viz. geraniol, nerol and citronellol. For Z. mobilis the production of these alcohols was suppressed in the presence of various organic solvents, e.g. toluene, and further decreased after EDTA addition.  相似文献   
39.
Terpenoid metabolism plays vital roles in stress defense and the environmental adaptation of monocot crops. Here, we describe the identification of the terpene synthase (TPS) gene family of the panicoid food and bioenergy model crop foxtail millet (Setaria italica). The diploid S. italica genome contains 32 TPS genes, 17 of which were biochemically characterized in this study. Unlike other thus far investigated grasses, S. italica contains TPSs producing all three ent‐, (+)‐ and syn‐copalyl pyrophosphate stereoisomers that naturally occur as central building blocks in the biosynthesis of distinct monocot diterpenoids. Conversion of these intermediates by the promiscuous TPS SiTPS8 yielded different diterpenoid scaffolds. Additionally, a cytochrome P450 monooxygenase (CYP99A17), which genomically clustered with SiTPS8, catalyzes the C19 hydroxylation of SiTPS8 products to generate the corresponding diterpene alcohols. The presence of syntenic orthologs to about 19% of the S. italica TPSs in related grasses supports a common ancestry of selected pathway branches. Among the identified enzyme products, abietadien‐19‐ol, syn‐pimara‐7,15‐dien‐19‐ol and germacrene‐d ‐4‐ol were detectable in planta, and gene expression analysis of the biosynthetic TPSs showed distinct and, albeit moderately, inducible expression patterns in response to biotic and abiotic stress. In vitro growth‐inhibiting activity of abietadien‐19‐ol and syn‐pimara‐7,15‐dien‐19‐ol against Fusarium verticillioides and Fusarium subglutinans may indicate pathogen defensive functions, whereas the low antifungal efficacy of tested sesquiterpenoids supports other bioactivities. Together, these findings expand the known chemical space of monocot terpenoid metabolism to enable further investigations of terpenoid‐mediated stress resilience in these agriculturally important species.  相似文献   
40.
Multi-substrate terpene synthases (TPSs) are distinct from typical TPSs that react with a single substrate. Although in vitro activity of few multi-substrate TPSs have been reported, in vivo characterization has not been well investigated for most of them. Here, a new TPS from Cananga odorata, CoTPS5, belonging to TPS-f subfamily was functionally characterized in vitro as well as in vivo. CoTPS5 reacted with multiple prenyl-pyrophosphate substrates of various chain lengths as a multi-substrate TPS. It catalyzed the formation of (E)-β-ocimene, (E,E)-α-farnesene and α-springene from geranyl pyrophosphate, (E,E)-farnesyl pyrophosphate and geranylgeranyl pyrophosphate, respectively. Upon transient expression in Nicotiana benthamiana, CoTPS5 localized to cytosol and produced only (E,E)-α-farnesene. However, expression of plastid-targeted CoTPS5 in N. benthamiana resulted in biosynthesis of all three compounds, (E)-β-ocimene, (E,E)-α-farnesene and α-springene. Similarly, transgenic Arabidopsis plants overexpressing plastid-targeted CoTPS5 showed stable and sustainable production of (E)-β-ocimene, (E,E)-α-farnesene and α-springene. Moreover, their production did not affect the growth and development of transgenic Arabidopsis plants. Our results demonstrate that redirecting multi-substrate TPS to a different intracellular compartment could be an effective way to prove in vivo activity of multi-substrate TPSs and thereby allowing for the production of multiple terpenoids simultaneously in plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号