首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   555篇
  免费   36篇
  国内免费   12篇
  603篇
  2024年   1篇
  2023年   6篇
  2022年   11篇
  2021年   24篇
  2020年   20篇
  2019年   20篇
  2018年   12篇
  2017年   17篇
  2016年   19篇
  2015年   18篇
  2014年   26篇
  2013年   44篇
  2012年   14篇
  2011年   18篇
  2010年   21篇
  2009年   31篇
  2008年   35篇
  2007年   22篇
  2006年   23篇
  2005年   14篇
  2004年   20篇
  2003年   17篇
  2002年   16篇
  2001年   5篇
  2000年   6篇
  1999年   14篇
  1998年   10篇
  1997年   15篇
  1996年   10篇
  1995年   9篇
  1994年   8篇
  1993年   6篇
  1992年   7篇
  1991年   12篇
  1990年   5篇
  1989年   4篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1985年   7篇
  1984年   7篇
  1983年   2篇
  1982年   5篇
  1981年   3篇
  1980年   5篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1973年   1篇
排序方式: 共有603条查询结果,搜索用时 15 毫秒
91.
Pulmonary surfactant (PS) is a complicated mixture of approximately 90% lipids and 10% proteins. It plays an important role in maintaining normal respiratory mechanics by reducing alveolar surface tension to near-zero values. Supplementing exogenous surfactant to newborns suffering from respiratory distress syndrome (RDS), a leading cause of perinatal mortality, has completely altered neonatal care in industrialized countries. Surfactant therapy has also been applied to the acute respiratory distress syndrome (ARDS) but with only limited success. Biophysical studies suggest that surfactant inhibition is partially responsible for this unsatisfactory performance. This paper reviews the biophysical properties of functional and dysfunctional PS. The biophysical properties of PS are further limited to surface activity, i.e., properties related to highly dynamic and very low surface tensions. Three main perspectives are reviewed. (1) How does PS permit both rapid adsorption and the ability to reach very low surface tensions? (2) How is PS inactivated by different inhibitory substances and how can this inhibition be counteracted? A recent research focus of using water-soluble polymers as additives to enhance the surface activity of clinical PS and to overcome inhibition is extensively discussed. (3) Which in vivo, in situ, and in vitro methods are available for evaluating the surface activity of PS and what are their relative merits? A better understanding of the biophysical properties of functional and dysfunctional PS is important for the further development of surfactant therapy, especially for its potential application in ARDS.  相似文献   
92.
DEP domain containing mTOR-interacting protein (DEPTOR) plays pivotal roles in regulating metabolism, growth, autophagy and apoptosis by functions as an endogenous inhibitor of mTOR signaling pathway. Activated by phosphatidic acid, a second messenger in mTOR signaling, DEPTOR dissociates from mTORC1 complex with unknown mechanism. Here, we present a 1.5 Å resolution crystal structure, which shows that the N-terminal two tandem DEP domains of hDEPTOR fold into a dumbbell-shaped structure, protruding the characteristic β-hairpin arms of DEP domains on each side. An 18 amino acids DDEX motif at the end of DEP2 interacts with DEP1 and stabilizes the structure. Biochemical studies showed that the tandem DEP domains directly interact with phosphatidic acid using two distinct positively charged patches. These results provide insights into mTOR activation upon phosphatidic acid stimulation.  相似文献   
93.
Liposomes containing the fluorescent dye 6-carboxyfluorescein were made from dipalmitoyl phosphatidylcholine and stearylamine. At 4°C the liposomes are adsorbed on the fiber surface and when the temperature is raised to 21°C, their contents are transferred directly into the fibers at a linear rate. Liposomes had little effect on the time course of the maximal twitch tension.  相似文献   
94.
Abstract

Cadherin adhesion receptors are fundamental determinants of tissue organization in health and disease. Increasingly, we have come to appreciate that classical cadherins exert their biological actions through active cooperation with the contractile actin cytoskeleton. Rather than being passive resistors of detachment forces, cadherins can regulate the assembly and mechanics of the contractile apparatus itself. Moreover, coordinate spatial patterning of adhesion and contractility is emerging as a determinant of morphogenesis. Here we review recent developments in cadherins and actin cytoskeleton cooperativity, by focusing on E-cadherin adhesive patterning in the epithelia. Next, we discuss the underlying principles of cellular rearrangement during Drosophila germband extension and epithelial cell extrusion, as models of how planar and apical–lateral patterns of contractility organize tissue architecture.  相似文献   
95.
The compositional differences between domains in phase-separated membranes are associated with differences in bilayer thickness and moduli. The resulting packing deformation at the phase boundary gives rise to a line tension, the one dimensional equivalent of surface tension. In this paper we calculate the line tension between a large membrane domain and a continuous phase as a function of the thickness mismatch and the contact angle between the phases. We find that the packing-induced line tension is sensitive to the contact angle, reaching a minimum at a specific value. The difference in the line tension between a flat domain (that is within the plane of the continuous phase) and a domain at the optimal contact angle may be of order 40%. This could explain why previous calculations of the thickness mismatch based line tension tend to yield values that are higher than those measured experimentally.  相似文献   
96.
The Cambrian bradoriid ? Parahoulongdongella sp. is shown to have a microreticulate (2nd order) surface sculpture. A possible organic sheet‐like origin is proposed for this reticulation. The relation between this second order pattern and those found in tertiary to Recent Ostracoda is discussed.  相似文献   
97.
Laulimalide is a natural product that has strong taxoid-like properties but binds to a distinct site on β-tubulin in the microtubule (MT) lattice. At elevated concentrations, it generates MTs that are resistant to depolymerization, and it induces a conformational state indistinguishable from taxoid-treated MTs. In this study, we describe the effect of low-dose laulimalide on various stages of the cell cycle and compare these effects to docetaxel as a representative of taxoid stabilizers. No evidence of MT bundling in interphase was observed with laulimalide, in spite of the fact that MTs are stabilized at low dose. Cells treated with laulimalide enter mitosis but arrest at prometaphase by generating multiple asters that coalesce into supernumerary poles and interfere with the integrity of the metaphase plate. Cells with a preformed bipolar spindle exist under heightened tension under laulimalide treatment, and chromosomes rapidly shear from the plate, even though the bipolar spindle is well-preserved. Docetaxel generates a similar phenotype for HeLa cells entering mitosis, but when treated at metaphase, cells undergo chromosomal fragmentation and demonstrate reduced centromere dynamics, as expected for a taxoid. Our results suggest that laulimalide represents a new class of molecular probe for investigating MT-mediated events, such as kinetochore-MT interactions, which may reflect the location of the ligand binding site within the interprotofilament groove.  相似文献   
98.
Glycolipids are one of the major classes of biosurfactants in which the rhamnolipids are best studied. The present work investigates the optimization of inoculum age and batch time for maximizing the yield of rhamnolipid from Pseudomonas aeruginosa (MTCC 2453). The yield and titer of rhamnolipids were maximum in the fermentation batch with an inoculum age of 24?hr. Batch time studies were performed on biomass production, rhamnolipid production, and sunflower oil utilization. The maximum yield of rhamnolipid was achieved at 96?hr when the culture cells were in the late exponential/early stationary phase. At optimum substrate concentration, maximum yield of 10.8?g/L was achieved. Further, downstream processing of crude rhamnolipid from broth using organic solvent extraction and subsequent purification using adsorption chromatography was done. In this study, chromatographic method was developed for purification of rhamnolipid by adsorption phenomena with more than 88.7% purity and 86.5% recovery. The present study provides new perspective on concepts involving separation by adsorption. Further antimicrobial properties and surfactant properties were studied for rhamnolipid production.  相似文献   
99.
100.
Ternary organic solar cells (OSCs) have attracted much research attention, as they can maintain the simplicity of the single‐junction device architecture while broadening the absorption range of OSCs. However, one main challenge that limits the development of ternary OSCs is the difficulty in controlling the morphology of ternary OSCs. In this paper, an effective approach to control the morphology is presented that leads to multiple cases of efficient nonfullerene ternary OSCs with efficiencies of up to 11.2%. This approach is based on a donor polymer with strong temperature dependent aggregation properties processed from hot solutions without any solvent additives and a pair of small molecular acceptors (SMAs) that have similar surface tensions and thus low propensity to form discrete phases. Such a ternary blend exhibits a simplified bulk‐heterojunction morphology that is similar to the morphology of previously reported binary blends. As a result, an almost linear relationship between VOC and film composition is observed for all nonfullerene ternary devices. Meanwhile, by carefully designing a control system with a large interfacial tension, a different phase separation and VOC dependence is demonstrated. This morphology control approach can be applicable to more material systems and accelerates the development of the ternary OSC field.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号