首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6548篇
  免费   397篇
  国内免费   168篇
  7113篇
  2024年   20篇
  2023年   76篇
  2022年   118篇
  2021年   167篇
  2020年   167篇
  2019年   228篇
  2018年   199篇
  2017年   134篇
  2016年   157篇
  2015年   202篇
  2014年   338篇
  2013年   413篇
  2012年   192篇
  2011年   286篇
  2010年   227篇
  2009年   251篇
  2008年   311篇
  2007年   281篇
  2006年   303篇
  2005年   247篇
  2004年   255篇
  2003年   224篇
  2002年   216篇
  2001年   119篇
  2000年   129篇
  1999年   157篇
  1998年   127篇
  1997年   132篇
  1996年   100篇
  1995年   106篇
  1994年   108篇
  1993年   85篇
  1992年   102篇
  1991年   68篇
  1990年   64篇
  1989年   74篇
  1988年   61篇
  1987年   56篇
  1986年   57篇
  1985年   57篇
  1984年   80篇
  1983年   56篇
  1982年   61篇
  1981年   55篇
  1980年   59篇
  1979年   47篇
  1978年   35篇
  1977年   27篇
  1976年   20篇
  1972年   14篇
排序方式: 共有7113条查询结果,搜索用时 15 毫秒
231.
The upper trapezius (UT) has been widely studied and related to alterations in clavicular kinematics in subject with shoulder disorders. However, the most common electrode site used to capture UT EMG is between C7 and the acromion, placing the electrodes over the acromial fibers rather than clavicular ones. Therefore, this study aimed to investigate the relationship between clavicular movements (elevation and retraction) and UT EMG recorded from three electrode sites (traditional electrode positioning and two different sites proposed for clavicular fibers evaluation). Furthermore, the position associated with the highest EMG during maximal isometric voluntary contractions (MVIC), for each electrode site, was determined for normalization purposes. EMG was simultaneously captured in the three electrode sites of 20 healthy subjects, during MVIC at five different positions and during shoulder elevation and abduction in scapular plane. Clavicular kinematics was recorded using an electromagnetic tracking system during the dynamic contractions. Shoulder abduction with head rotation and lateral flexion elicited the highest EMG amplitude on the three electrode sites and was used to normalize the signals. A cross-correlation analysis showed high correlations between all electrode sites and clavicular movements. However, the traditional electrode site seems to record more informative signals in healthy subjects.  相似文献   
232.
Abstract

Small ankyrin-1 is a splice variant of the ANK1 gene that binds to obscurin A. Previous studies have identified electrostatic interactions that contribute to this interaction. In addition, molecular dynamics (MD) simulations predict four hydrophobic residues in a ‘hot spot’ on the surface of the ankyrin-like repeats of sAnk1, near the charged residues involved in binding. We used site-directed mutagenesis, blot overlays and surface plasmon resonance assays to study the contribution of the hydrophobic residues, V70, F71, I102 and I103, to two different 30-mers of obscurin that bind sAnk1, Obsc6316–6345 and Obsc6231–6260. Alanine mutations of each of the hydrophobic residues disrupted binding to the high affinity binding site, Obsc6316–6345. In contrast, V70A and I102A mutations had no effect on binding to the lower affinity site, Obsc6231–6260. Alanine mutagenesis of the five hydrophobic residues present in Obsc6316–6345 showed that V6328, I6332, and V6334 were critical to sAnk1 binding. Individual alanine mutants of the six hydrophobic residues of Obsc6231–6260 had no effect on binding to sAnk1, although a triple alanine mutant of residues V6233/I6234/I6235 decreased binding. We also examined a model of the Obsc6316–6345-sAnk1 complex in MD simulations and found I102 of sAnk1 to be within 2.2Å of V6334 of Obsc6316–6345. In contrast to the I102A mutation, mutating I102 of sAnk1 to other hydrophobic amino acids such as phenylalanine or leucine did not disrupt binding to obscurin. Our results suggest that hydrophobic interactions contribute to the higher affinity of Obsc6316–6345 for sAnk1 and to the dominant role exhibited by this sequence in binding.  相似文献   
233.
It remains unclear whether the necessity of calcified mellitus induced by high inorganic phosphate (Pi) is required and the roles of autophagy plays in aldosterone (Aldo)‐enhanced vascular calcification (VC) and vascular smooth muscle cell (VSMC) osteogenic differentiation. In the present study, we found that Aldo enhanced VC both in vivo and in vitro only in the presence of high Pi, alongside with increased expression of VSMC osteogenic proteins (BMP2, Runx2 and OCN) and decreased expression of VSMC contractile proteins (α‐SMA, SM22α and smoothelin). However, these effects were blocked by mineralocorticoid receptor inhibitor, spironolactone. In addition, the stimulatory effects of Aldo on VSMC calcification were further accelerated by the autophagy inhibitor, 3‐MA, and were counteracted by the autophagy inducer, rapamycin. Moreover, inhibiting adenosine monophosphate‐activated protein kinase (AMPK) by Compound C attenuated Aldo/MR‐enhanced VC. These results suggested that Aldo facilitates high Pi‐induced VSMC osteogenic phenotypic switch and calcification through MR‐mediated signalling pathways that involve AMPK‐dependent autophagy, which provided new insights into Aldo excess‐associated VC in various settings.  相似文献   
234.
235.
为探讨人体进行最大等速离心运动(ECC)诱发血液肌酸激酶(CK)水平变化、血清肌酸激酶水平与肌肉损伤(EIMD)的关系,本研究筛选出150名"缺乏运动"的健康大学生为受试者,进行血样采集,进行前测包括血清肌酸激酶(CK)、最大等长肌力(MVC)、肘关节活动角度(ROM)、上臂围(CIR)、肌肉感受(VAS)。受试者进行5组×12次最大等速离心运动,运动后恢复期,将全部受试者血清肌酸激酶值进行排序:血清肌酸激酶值最高和最低20%样本,高肌酸激酶水平组(HCK组)和低肌酸激酶水平组(low LCK组),利用SPSS18.0统计学软件,以方差分析和多元回归分析进行统计分析。本研究发现全部受试者、高肌酸激酶水平组、低肌酸激酶水平组在最大等速离心运动后各评估指标均显著高于比前测结果,p<0.05。全部受试者、高肌酸激酶水平组受试者在最大等速离心运动后各指标变化皆明显大于低肌酸激酶水平组受试者,p<0.05。受试者血清肌酸激酶峰值与最大等长肌力、肘关节活动角度、上臂围、肌肉感受最大变化值有相关,p<0.05。本研究认为肌肉损伤程度与肌酸激酶水平具有显著相关,尤其高血清肌酸激酶水平者肌酸激酶水平较大程度反映肌肉损伤程度趋势。本研究表明,肘关节活动角度、上臂围具有预测肌酸激酶峰值的效果。  相似文献   
236.
Hutchinson–Gilford progeria syndrome (HGPS) is caused by the accumulation of mutant prelamin A (progerin) in the nuclear lamina, resulting in increased nuclear stiffness and abnormal nuclear architecture. Nuclear mechanics are tightly coupled to cytoskeletal mechanics via lamin A/C. However, the role of cytoskeletal/nuclear mechanical properties in mediating cellular senescence and the relationship between cytoskeletal stiffness, nuclear abnormalities, and senescent phenotypes remain largely unknown. Here, using muscle‐derived mesenchymal stromal/stem cells (MSCs) from the Zmpste24?/? (Z24?/?) mouse (a model for HGPS) and human HGPS fibroblasts, we investigated the mechanical mechanism of progerin‐induced cellular senescence, involving the role and interaction of mechanical sensors RhoA and Sun1/2 in regulating F‐actin cytoskeleton stiffness, nuclear blebbing, micronuclei formation, and the innate immune response. We observed that increased cytoskeletal stiffness and RhoA activation in progeria cells were directly coupled with increased nuclear blebbing, Sun2 expression, and micronuclei‐induced cGAS‐Sting activation, part of the innate immune response. Expression of constitutively active RhoA promoted, while the inhibition of RhoA/ROCK reduced cytoskeletal stiffness, Sun2 expression, the innate immune response, and cellular senescence. Silencing of Sun2 expression by siRNA also repressed RhoA activation, cytoskeletal stiffness and cellular senescence. Treatment of Zmpste24?/? mice with a RhoA inhibitor repressed cellular senescence and improved muscle regeneration. These results reveal novel mechanical roles and correlation of cytoskeletal/nuclear stiffness, RhoA, Sun2, and the innate immune response in promoting aging and cellular senescence in HGPS progeria.  相似文献   
237.
Adequate support of energy for biological activities and during fluctuation of energetic demand is crucial for healthy aging; however, mechanisms for energy decline as well as compensatory mechanisms that counteract such decline remain unclear. We conducted a discovery proteomic study of skeletal muscle in 57 healthy adults (22 women and 35 men; aged 23–87 years) to identify proteins overrepresented and underrepresented with better muscle oxidative capacity, a robust measure of in vivo mitochondrial function, independent of age, sex, and physical activity. Muscle oxidative capacity was assessed by 31P magnetic resonance spectroscopy postexercise phosphocreatine (PCr) recovery time (τPCr) in the vastus lateralis muscle, with smaller τPCr values reflecting better oxidative capacity. Of the 4,300 proteins quantified by LC‐MS in muscle biopsies, 253 were significantly overrepresented with better muscle oxidative capacity. Enrichment analysis revealed three major protein clusters: (a) proteins involved in key energetic mitochondrial functions especially complex I of the electron transport chain, tricarboxylic acid (TCA) cycle, fatty acid oxidation, and mitochondrial ABC transporters; (b) spliceosome proteins that regulate mRNA alternative splicing machinery, and (c) proteins involved in translation within mitochondria. Our findings suggest that alternative splicing and mechanisms that modulate mitochondrial protein synthesis are central features of the molecular mechanisms aimed at maintaining mitochondrial function in the face of impairment. Whether these mechanisms are compensatory attempt to counteract the effect of aging on mitochondrial function should be further tested in longitudinal studies.  相似文献   
238.
Caveolae position CaV3.2 (T‐type Ca2+ channel encoded by the α‐3.2 subunit) sufficiently close to RyR (ryanodine receptors) for extracellular Ca2+ influx to trigger Ca2+ sparks and large‐conductance Ca2+‐activated K+ channel feedback in vascular smooth muscle. We hypothesize that this mechanism of Ca2+ spark generation is affected by age. Using smooth muscle cells (VSMCs) from mouse mesenteric arteries, we found that both Cav3.2 channel inhibition by Ni2+ (50 µM) and caveolae disruption by methyl‐ß‐cyclodextrin or genetic abolition of Eps15 homology domain‐containing protein (EHD2) inhibited Ca2+ sparks in cells from young (4 months) but not old (12 months) mice. In accordance, expression of Cav3.2 channel was higher in mesenteric arteries from young than old mice. Similar effects were observed for caveolae density. Using SMAKO Cav1.2?/? mice, caffeine (RyR activator) and thapsigargin (Ca2+ transport ATPase inhibitor), we found that sufficient SR Ca2+ load is a prerequisite for the CaV3.2‐RyR axis to generate Ca2+ sparks. We identified a fraction of Ca2+ sparks in aged VSMCs, which is sensitive to the TRP channel blocker Gd3+ (100 µM), but insensitive to CaV1.2 and CaV3.2 channel blockade. Our data demonstrate that the VSMC CaV3.2‐RyR axis is down‐regulated by aging. This defective CaV3.2‐RyR coupling is counterbalanced by a Gd3+ sensitive Ca2+ pathway providing compensatory Ca2+ influx for triggering Ca2+ sparks in aged VSMCs.  相似文献   
239.
Hydrodynamic limb vein injection is an in vivo locoregional gene delivery method. It consists of administrating a large volume of solution containing nucleic acid constructs in a limb with both blood inflow and outflow temporarily blocked using a tourniquet. The fast, high pressure delivery allows the musculature of the whole limb to be reached. The skeletal muscle is a tissue of choice for a variety of gene transfer applications, including gene therapy for Duchenne muscular dystrophy or other myopathies, as well as for the production of antibodies or other proteins with broad therapeutic effects. Hydrodynamic limb vein delivery has been evaluated with success in a large range of animal models. It has also proven to be safe and well‐tolerated in muscular dystrophy patients, thus supporting its translation to the clinic. However, some possible limitations may occur at different steps of the delivery process. Here, we have highlighted the interests, bottlenecks and potential improvements that could further optimize non‐viral gene transfer following hydrodynamic limb vein injection.  相似文献   
240.
Persistent quadriceps strength deficits in individuals with anterior cruciate ligament reconstruction (ACLr) have been attributed to arthrogenic muscle inhibition (AMI). The purpose of the present study was to investigate the effect of vibration-induced hamstrings fatigue on AMI in patients with ACLr. Eight participants with unilateral ACLr (post-surgery time: M = 46.5, SD = 23.5 months; age: M = 21.4, SD = 1.4 years) and eight individuals with no previous history of knee injury (age: M = 22.5, SD = 2.5 years) were recruited. A fatigue protocol, consisting of 10 min of prolonged local hamstrings vibration, was applied to both the ACLr and control groups. The central activation ratio (CAR) of the quadriceps was measured with a superimposed burst of electrical stimulation, and hamstrings/quadriceps coactivation was assessed using electromyography (EMG) during isometric knee extension exercises, both before and after prolonged local vibration. For the ACLr group, the hamstrings strength, measured by a load cell on a purpose-built chair, was significantly (P = 0.016) reduced about 14.5%, indicating fatigue was actually induced in the hamstrings. At baseline, the ACLr group showed a trend (P = 0.051) toward a lower quadriceps CAR (M = 93.2%, SD = 6.2% versus M = 98.1%, SD = 1.1%) and significantly (P = 0.001) higher hamstrings/quadriceps coactivation (M = 15.1%, SD = 6.2% versus M = 7.5%, SD = 4.0%) during knee extension compared to the control group. The fatigue protocol significantly (P = 0.001) increased quadriceps CAR (from M = 93.2%, SD = 6.2% to M = 97.9%, SD = 2.8%) and significantly (P = 0.006) decreased hamstrings/quadriceps coactivation during knee extension (from M = 15.1%, SD = 6.2% to M = 9.5%, SD = 4.5%) in the ACLr group. In conclusion, vibration-induced hamstrings fatigue can alleviate AMI of the quadriceps in patients with ACLr. This finding has clinical implications in the management of recovery for ACLr patients with quadriceps strength deficits and dysfunction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号