首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   304篇
  免费   21篇
  国内免费   6篇
  2023年   3篇
  2022年   3篇
  2021年   3篇
  2020年   14篇
  2019年   7篇
  2018年   10篇
  2017年   9篇
  2016年   9篇
  2015年   6篇
  2014年   12篇
  2013年   16篇
  2012年   9篇
  2011年   9篇
  2010年   7篇
  2009年   13篇
  2008年   14篇
  2007年   7篇
  2006年   7篇
  2005年   10篇
  2004年   8篇
  2003年   15篇
  2002年   10篇
  2001年   7篇
  2000年   7篇
  1999年   3篇
  1998年   11篇
  1997年   7篇
  1996年   5篇
  1995年   3篇
  1994年   6篇
  1993年   4篇
  1992年   7篇
  1991年   5篇
  1990年   5篇
  1989年   4篇
  1988年   4篇
  1986年   4篇
  1985年   5篇
  1984年   4篇
  1983年   2篇
  1982年   1篇
  1981年   14篇
  1980年   2篇
  1979年   5篇
  1978年   4篇
  1977年   3篇
  1976年   3篇
  1975年   1篇
  1974年   1篇
  1971年   1篇
排序方式: 共有331条查询结果,搜索用时 31 毫秒
281.
Permission was received from the Brooks AFB Institutional Review Board and the AF Surgeon General's Office to exceed the peak power density (PD = 35 mW/cm(2)) we had previously studied during partial body exposure of human volunteers at 2450 MHz. Two additional peak PD were tested (50 and 70 mW/cm(2)). The higher of these PD (normalized peak local SAR = 15.4 W/kg) is well outside the IEEE C95.1 guidelines for partial body exposure, as is the estimated whole body SAR approximately 1.0 W/kg. Seven volunteers (four males, three females) were tested at each PD in three ambient temperatures (T(a) = 24, 28, and 31 degrees C) under our standard protocol (30 min baseline, 45 min RF exposure, 10 min baseline). The thermophysiological data (esophageal and six skin temperatures, metabolic heat production, local sweat rate, and local skin blood flow) were combined with comparable data at PD = 0, 27, and 35 mW/cm(2) from our 1999 study to generate response functions across PD. No change in esophageal temperature or metabolic heat production was recorded at any PD in any T(a). At PD = 70 mW/cm(2), skin temperature on the upper back (irradiated directly) increased 4.0 degrees C in T(a) = 24 degrees C, 2.6 degrees C in T(a) = 28 degrees C, and 1.8 degrees C in T(a) = 31 degrees C. These differences were primarily due to the increase in local sweat rate, which was greatest in T(a) = 31 degrees C. Also at PD = 70 mW/cm(2), local skin blood flow on the back increased 65% over baseline levels in T(a) = 31 degrees C, but only 40% in T(a) = 24 degrees C. Although T(a) becomes an important variable when RF exposure exceeds the C95.1 partial body exposure limits, vigorous heat loss responses of blood flow and sweating maintain thermal homeostasis efficiently. It is also clear that strong sensations of heat and thermal discomfort will motivate a timely retreat from a strong RF field, long before these physiological responses are exhausted. Published 2001 Wiley-Liss, Inc.  相似文献   
282.
283.
284.
《Chronobiology international》2013,30(9):1273-1283
It is generally assumed that skin vascular resistance contributes only to a small extent to total peripheral resistance and hence to blood pressure (BP). However, little is known about the impact of skin blood flow (SBF) changes on the diurnal variations of BP under ambulatory conditions. The main aim of the study was to determine whether diurnal patterns of distal SBF are related to mean arterial BP (MAP). Twenty-four-hour ambulatory measurements of BP, heart rate (HR) and distal (mean of hands and feet) as well as proximal (mean of sternum and infraclavicular region) skin temperatures were carried out in 51 patients (men/women?=?18/33) during a 2-d eye hospital investigation. The standardized ambulatory protocol allowed measurements with minimal interference from uncontrolled parameters and, hence, some conclusive interpretations. The distal minus proximal skin temperature gradient (DPG) provided a measure for distal SBF. Individual cross-correlation analyses revealed that the diurnal pattern of MAP was nearly a mirror image of DPG and hence of distal SBF. Scheduled lunch and dinner induced an increase in DPG and a decline in MAP, while HR increased. Low daytime DPG (i.e. low distal SBF) levels significantly predicted sleep-induced BP dipping (r?=??.436, p?=?.0014). Preliminary path analysis suggested that outdoor air temperature and atmospheric pressure may act on MAP via changed distal SBF. Changes in distal SBF may contribute to diurnal variation in MAP, including sleep-induced BP dipping and changes related to food intake. This finding might have an impact on individual cardiovascular risk prediction with respect to diurnal, seasonal and weather variations; however, the underlying mechanisms remain to be discovered.  相似文献   
285.
Diurnal cycle variations in body-heat loss and heat production, and their resulting core body temperature (CBT), are relatively well investigated; however, little is known about their variations across the menstrual cycle under ambulatory conditions. The main purpose of this study was to determine whether menstrual cycle variations in distal and proximal skin temperatures exhibit similar patterns to those of diurnal variations, with lower internal heat conductance when CBT is high, i.e. during the luteal phase. Furthermore, we tested these relationships in two groups of women, with and without thermal discomfort of cold extremities (TDCE). In total, 19 healthy eumenorrheic women with regular menstrual cycles (28–32 days), 9 with habitual TDCE (ages 29?±?1.5 year; BMI 20.1?±?0.4) and 10 controls without these symptoms (CON: aged 27?±?0.8 year; BMI 22.7?±?0.6; p?<?0.004 different to TDCE) took part in the study. Twenty-eight days continuous ambulatory skin temperature measurements of distal (mean of hands and feet) and proximal (mean of sternum and infraclavicular regions) skin regions, thighs, and calves were carried out under real-life, ambulatory conditions (i-Buttons® skin probes, sampling rate: 2.5?min). The distal minus proximal skin temperature gradient (DPG) provided a valuable measure for heat redistribution from the core to the shell, and, hence, for internal heat conduction. Additionally, basal body temperature was measured sublingually directly after waking up in bed. Mean diurnal amplitudes in skin temperatures increased from proximal to distal skin regions and the 24-h mean values were inversely related. TDCE compared to CON showed significantly lower hand skin temperatures and DPG during daytime. However, menstrual cycle phase did not modify these diurnal patterns, indicating that menstrual and diurnal cycle variations in skin temperatures reveal additive effects. Most striking was the finding that all measured skin temperatures, together with basal body temperature, revealed a similar menstrual cycle variation (independent of BMI), with highest and lowest values during the luteal and follicular phases, respectively. These findings lead to the conclusion that in contrast to diurnal cycle, variations in CBT variation across the menstrual cycle cannot be explained by changes in internal heat conduction under ambulatory conditions. Although no measurements of metabolic heat production were carried out increased metabolic heat generation during the luteal phase seems to be the most plausible explanation for similar body temperature increases.  相似文献   
286.
Isothermal-isobaric molecular dynamics simulations are used to calculate the specific volume of models of trehalose and three amorphous trehalose-water mixtures (2.9%, 4.5% and 5.3% (w/w) water, respectively) as a function of temperature. Plots of specific volume versus temperature exhibit a characteristic change in slope when the amorphous systems change from the glassy to the rubbery state and the intersection of the two regression lines provides an estimate of the glass transition temperature T(g). A comparison of the calculated and experimental T(g) values, as obtained from differential scanning calorimetry, shows that despite the predicted values being systematically higher (about 21-26K), the trend and the incremental differences between the T(g) values have been computed correctly: T(g)(5.3%(w/w))相似文献   
287.
Predicted elevated temperatures and a shift from a winter to summer rainfall pattern associated with global warming could result in the exposure of hydrated lichens during summer to more numerous temperature extremes that exceed their thermal thresholds. This hypothesis was tested by measuring lethal temperature thresholds under laboratory and natural conditions for four epilithic lichen species (Xanthoparmelia austro‐africana, X. hyporhytida, Xanthoparmelia sp., Xanthomaculina hottentotta) occurring on quartz gravel substrates at a hot arid inland site two epigeous lichen species (Teloschistes capensis, Ramalina sp.) occurring on gypsum‐rich topsoil at a warm humid coastal site. Extrapolated lethal temperatures for photosynthetic quantum yield under laboratory conditions were up to 4°C higher for lichens from a dry inland site than those from a humid coastal site. Lethal temperatures extrapolated for photosynthetic quantum yield at a saturating photosynthetic photon flux density of ≥11,000 μmol photons m?2 s?1 under natural conditions were up to 6°C higher for lichens from the dry inland site than the more humid coastal site. It is concluded that only under atypical conditions of lichen exposure in a hydrated state to temperature extremes at high midday solar irradiances during summer could lethal photosynthetic thresholds in sensitive lichen species be potentially exceeded, but whether the increased frequency of such conditions with climate warming would lead to increased likelihood of lichen mortality is debatable.  相似文献   
288.
Barley (Hordeum vulgare L.) leaves and intact spinach (Spinacia oleracea L.) chloroplasts were exposed to short-term heating, and the aftereffects of heat treatment on in vitro andin vivo activities of nitrate reductase and noncyclic electron transport associated with nitrite reduction were studied. Heating of leaves at temperatures above 40°C led to a monotonic decrease in nitrate reductase in vitro activity. On the contrary, the in vivo enzyme activity, assayed in intact leaf tissues after 5-min heat treatment, increased 1.5 times upon elevating the pretreatment temperature from 37 to 40°C and gradually decreased at higher temperatures. Noncyclic electron transport related to CO2 fixation in intact chloroplasts decreased gradually after heat exposures above 39°C, unlike the electron transport to nitrite as a terminal acceptor, which was stimulated by heating of intact chloroplast suspensions in the temperature range from 33 to 40°C. The heating at higher temperatures inhibited nitrite photoreduction. It is concluded that the heating of phototrophic cells at sublethal temperatures stimulates the mobilization of inorganic nitrogen and thereby facilitates the repair of thermally induced injuries of proteinaceous cell structures. The stimulation of nitrate reductase activity in vivo at the temperature range 37–40°C provides an evidence for the increase in the availability of reductants in the cytosolic compartment of the leaf cell.  相似文献   
289.
The light-induced rise in chlorophyll fluorescence and the subsequent decay of fluorescence in darkness were measured in barley and maize leaves exposed to heat treatment. The redox conversions of the photosystem I primary donor P700, induced by far-red light, were also monitored from the absorbance changes at 830 nm. After heating of leaves at temperatures above 40°C, the ratio of variable and maximum fluorescence decreased for leaves of both plant species, indicating the inhibition of photosystem II (PSII) activity. A twofold reduction of this ratio in barley and maize leaves was observed after heating at 45.3 and 48.1°C, respectively, which suggests the higher functional resistance of PSII in maize. The amplitude of the slow phase in the dark relaxation of variable fluorescence did not change after the treatment of barley and maize leaves at temperatures up to 48°C. In leaves treated at 42 and 46°C, the slow phase of dark relaxation deviated from an exponential curve. The relaxation kinetics included a temporary increase in fluorescence to a peak about 1 s after turning off the actinic light. Unlike the slow component, the fast and intermediate phases in the dark relaxation of variable fluorescence disappeared fully or partly after the treatment of leaves at 46°C. The photooxidation of P700 in heat-treated leaves was saturated at much higher irradiances of far-red light than in untreated leaves. At the same time, the dark reduction of P700+ was substantially accelerated after heat treatment. The data provide evidence that the heating of leaves stimulated the alternative pathways of electron transport, i.e., cyclic transport around photosystem I and/or the donation of electrons to the plastoquinone pool from the reduced compounds located in the chloroplast stroma. The rate of alternative electron transport after the heat treatment was higher in maize leaves than in barley leaves. It is supposed that the stimulation of alternative electron transport, associated with proton pumping into the thylakoid, represents a protective mechanism that prevents the photoinhibition of PSII in leaves upon a strong suppression of linear electron transport in chloroplasts exposed to heat treatment.  相似文献   
290.
Tuber borchii is an ectomycorrhizal ascomycete with a wide ecological range, which forms valuable fruit bodies (truffles). The effect of heat stress on the growth and morphology of ectomycorrhizas and mycelia of 11 T. borchii strains of different geographical and ecological provenance was evaluated. Mycelia and T. borchii-colonized plants were differentially grow at 22 °C, 28 °C and 34 °C. Further, the expression of two genes involved in stress response was also analysed in strains showing a different growth response to the high temperatures. Four out of 11 strains were classified as tolerant to heat stress based on their ability to grow and form mycorrhizas at 28 °C as at 22 °C. Only one strain seemed to show a high-temperature induced quiescence and survived after exposure at 34 °C. The expression of the genes considered in this work seems to be related to the level of heat stress tolerance in a strain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号