首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11580篇
  免费   1195篇
  国内免费   2050篇
  2024年   42篇
  2023年   250篇
  2022年   228篇
  2021年   345篇
  2020年   486篇
  2019年   518篇
  2018年   459篇
  2017年   502篇
  2016年   498篇
  2015年   530篇
  2014年   565篇
  2013年   861篇
  2012年   557篇
  2011年   519篇
  2010年   496篇
  2009年   596篇
  2008年   617篇
  2007年   657篇
  2006年   599篇
  2005年   502篇
  2004年   452篇
  2003年   374篇
  2002年   347篇
  2001年   332篇
  2000年   308篇
  1999年   260篇
  1998年   229篇
  1997年   224篇
  1996年   206篇
  1995年   189篇
  1994年   190篇
  1993年   197篇
  1992年   159篇
  1991年   137篇
  1990年   116篇
  1989年   137篇
  1988年   105篇
  1987年   100篇
  1986年   101篇
  1985年   134篇
  1984年   114篇
  1983年   95篇
  1982年   87篇
  1981年   81篇
  1980年   89篇
  1979年   58篇
  1978年   50篇
  1977年   39篇
  1976年   32篇
  1973年   16篇
排序方式: 共有10000条查询结果,搜索用时 718 毫秒
981.
The mRNA-binding site of annexin A2 resides in helices C-D of its domain IV   总被引:1,自引:0,他引:1  
Annexin A2 (AnxA2) is a Ca(2+)-binding and phospholipid-binding protein involved in different intracellular processes including exocytosis, endocytosis and membrane-cytoskeleton movements. We have previously identified AnxA2 as an mRNA-binding protein present in cytoskeleton-bound polysomes, that binds to a specific approximately 100 nucleotide region in the 3'-untranslated region of c-myc and its cognate mRNA. In the present study, we show by UV cross-linking assays and surface plasmon resonance analyses that the mRNA-binding site of AnxA2 resides in its domain IV. Furthermore, the interaction of full-length AnxA2 with the 3'-untranslated region of anxA2 mRNA is Ca(2+)-dependent. By contrast, the interaction is Ca(2+)-independent for the isolated domain IV of AnxA2, suggesting that the mRNA-binding site is masked in Apo-AnxA2 and gains exposure through a Ca(2+)-induced conformational change of AnxA2 generating a favourable mRNA-binding site. The AnxA2-mRNA interaction is specific and involves helices C and D in domain IV of AnxA2, since point mutagenesis of several charged and polar exposed residues of these helices in the full-length protein strongly reduce RNA binding. The interaction appears to be sequential involving an initial phase of recognition dominated by electrostatic interactions, most likely between lysine residues and the phosphate backbone of RNA, followed by a second phase contributing to the specificity of the interaction.  相似文献   
982.
Isocitrate dehydrogenase (IDH) has been studied extensively due to its central role in the Krebs cycle, catalyzing the oxidative NAD(P)(+)-dependent decarboxylation of isocitrate to alpha-ketoglutarate and CO(2). Here, we present the first crystal structure of IDH from a psychrophilic bacterium, Desulfotalea psychrophila (DpIDH). The structural information is combined with a detailed biochemical characterization and a comparative study with IDHs from the mesophilic bacterium Desulfitobacterium hafniense (DhIDH), porcine (PcIDH), human cytosolic (HcIDH) and the hyperthermophilic Thermotoga maritima (TmIDH). DpIDH was found to have a higher melting temperature (T(m)=66.9 degrees C) than its mesophilic homologues and a suboptimal catalytic efficiency at low temperatures. The thermodynamic activation parameters indicated a disordered active site, as seen also for the drastic increase in K(m) for isocitrate at elevated temperatures. A methionine cluster situated at the dimeric interface between the two active sites and a cluster of destabilizing charged amino acids in a region close to the active site might explain the poor isocitrate affinity. On the other hand, DpIDH was optimized for interacting with NADP(+) and the crystal structure revealed unique interactions with the cofactor. The highly acidic surface, destabilizing charged residues, fewer ion pairs and reduced size of ionic networks in DpIDH suggest a flexible global structure. However, strategic placement of ionic interactions stabilizing the N and C termini, and additional ionic interactions in the clasp domain as well as two enlarged aromatic clusters might counteract the destabilizing interactions and promote the increased thermal stability. The structure analysis of DpIDH illustrates how psychrophilic enzymes can adjust their flexibility in dynamic regions during their catalytic cycle without compromising the global stability of the protein.  相似文献   
983.
The five-helix bundle lambda6-85* is a fast two-state folder. Several stabilized mutants have been reported to fold kinetically near-downhill or downhill. These mutants undergo a transition to two-state folding kinetics when heated. It has been suggested that this transition is caused by increased hydrophobicity at higher temperature. Here we investigate two histidine-containing mutants of lambda6-85* to see if a weaker hydrophobic core can extend the temperature range of downhill folding. The very stable lambdaHA is the fastest-folding lambda repressor to date (k(f)(-1) approximately k(obs)(-1)=2.3 micros at 44 degrees C). It folds downhill at low temperature, but transits back to two-state folding at its unfolding midpoint. lambdaHG has a weakened hydrophobic core. It is less stable than some slower folding mutants of lambda6-85*, and it has more exposed hydrophobic surface area in the folded state. This mutant nonetheless folds very rapidly, and has the non-exponential folding kinetics of an incipient downhill folder even at the unfolding midpoint (k(m)(-1) approximately 2 micros, k(a)(-1)=15 micros at 56 degrees C). We also compare the thermodynamic melting transition of lambdaHG with the nominal two-state folding mutant lambdaQG, which has a similar melting temperature. Unlike lambdaQG, lambdaHG yields fluorescence wavelength-dependent cooperativities and probe-dependent melting temperatures. This result combined with previous work shows that the energy landscapes of lambda repressor mutants support all standard folding mechanisms.  相似文献   
984.
Quorum sensing is a bacterial mechanism used to synchronize the coordinated response of a microbial population. Because quorum sensing in Gram-negative bacteria depends on release and detection of a diffusible signaling molecule (autoinducer) among a multicellular group, it is considered a simple form of cell-cell communication for the purposes of mathematical analysis. Stochastic equation systems have provided a common approach to model biochemical or biophysical processes. Recently, the effect of noise to synchronize a specific homogeneous quorum sensing network was successfully modeled using a stochastic equation system with fixed parameters. The question remains of how to model quorum sensing networks in a general setting. To address this question, we first set a stochastic equation system as a general model for a heterogeneous quorum sensing network. Then, using two relevant biophysical characteristics of Gram-negative bacteria (the permeability of the cell membrane to the autoinducer and the symmetry of autoinducer diffusion) we construct the solution of the stochastic equation system at an abstract level. The solution indicates that stable synchronization of a quorum sensing network is robustly induced by an environment with a heterogenous distribution of extracellular and intracellular noise. The synchronization is independent of the initial state of the system and is solely the result of the connectivity of the cell network established through the effects of extracellular noise.  相似文献   
985.
Experimental studies document the fact that environmental temperature changes can affect the timing of interactions in many consumer-resource systems through altered, or shifted, phenologies of the species involved. We develop a simple mathematical model that shows one method to measure, quantitatively, the magnitude of the shift. Under different temperature regimes we compute the intersection of two regions in a joint phenology space: the region where temporal interactions can occur and the region where particular-sized predators consume particular-sized prey. The area of the intersection provides a numerical value for measuring the effective interaction. A comparison of the areas for different temperature histories defines an index, or yardstick, for quantitatively assessing the effects of temperature variations on phenological shifts.  相似文献   
986.
The photosynthetic responses to moderately high temperatures (38 degrees C, imposed at 21% or 2% O(2) in air and 1500 mumol m(-2) s(-1)) were compared in wheat (Triticum aestivum L.) cultivars grown in northern regions of Ukraine and expected to be relatively sensitive to high temperatures ('North' cultivars) and in cultivars grown in southern regions and expected to be relatively heat-tolerant ('South' cultivars). Heating intact leaves in 21% O(2) for 1 h decreased CO(2) assimilation by c. 63% in 'North' cultivars and only c. 32% in 'South' cultivars, with a decrease in PSII activity being observed in only one of the 'North' cultivars. Carboxylation efficiency was decreased by about 2.7-fold in 'North' cultivars with no significant effect in 'South' cultivars. The maximum rates of carboxylation by Rubisco in vivo, V(cmax), estimated from Farquhar's model, increased more than 2-fold in 'South' cultivars and remained unchanged in 'North' cultivars while the maximum rate of RuBP regeneration, J(max), decreased by 53% and 21% in 'North' and 'South' cultivars, respectively. Where the heat treatment was imposed in 2% O(2) this increased (as compared with treatment at 21% O(2)) the inhibitory effect on CO(2) assimilation in tolerant cultivars, but decreased it in sensitive ones. The results suggested that differences in tolerance of moderately high temperatures in wheat relate to the stability of the Rubisco function and to RuBP regeneration activity rather than to the effects on PSII activity or stomatal control.  相似文献   
987.
Abstract: Synchrony is an important component of wildlife population dynamics because it describes spatial pattern in temporal population fluctuations. The strength and spatial extent of synchrony can provide information about the extrinsic and intrinsic forces that shape population structure. Wild turkey (Meleagris gallopavo silvestris) populations undergo annual fluctuations, possibly due to variation in weather during the reproductive season. To determine if spring weather plays a role in synchronizing wild turkey populations, we used a modified Mantel-type spatial autocorrelation procedure to measure the synchrony in fall wild turkey harvest data collected in 443 townships from 1990 to 1995 and compared this to the pattern of synchrony in spring weather variables (May rainfall and temp) over the same period. We measured correlation using Spearman correlation coefficients between the total fall harvests from 1990 to 1995 for each pair of townships, and sorted pairs into 6 50-km distance intervals. We calculated a mean correlation coefficient for each interval and estimated its P-value using resampling. We found moderately significant synchrony in the fall harvest (rs = 0.12-0.34, P < 0.008) among township pairs <150 km apart, but no significant synchrony beyond this distance. In contrast, both May temperature (r = 0.82-0.90, P < 0.001) and rainfall (r = 0.49-0.76, P < 0.001) were strongly synchronized across all 6 distance intervals. Visual inspection of time series in the wild turkey fall harvest suggests that populations may be synchronized in some years when weather promotes high reproductive success (i.e., a synchronized growth peak) and asynchronous in other years. Knowledge of the spatial dynamics of wild turkey populations will aid wildlife managers in estimating population change, setting harvest quotas, and managing habitat.  相似文献   
988.
Egg color as an adaptation for thermoregulation   总被引:1,自引:0,他引:1  
ABSTRACT.   Avian embryos are incubated at temperatures only 2–6 °C below that at which hyperthermia begins to influence survival. In habitats where sunlight directly strikes the eggs, even for short periods, heat gain may be a substantial threat to survival, and reflective pigmentation may reduce the rate of heat gain. The results of previous studies suggest that light-colored eggs acquire heat slower than dark eggs, but artificial pigments were used to create differences in egg coloration. This approach is problematic because natural eggshell pigments have low absorbance in the near-infrared waveband that encompasses about half of incident solar radiation. We used naturally-pigmented eggs to measure the influence of egg coloration on heat gain. Triads ( N = 18) of eggs from Brewer's ( Euphagous cyanocephalus ), Red-winged ( Agelaius phoeniceus ), and Yellow-headed ( Xanthocephalus xanthocephalus ) blackbirds were crossed with six nests of each species and either exposed to full sunlight or placed under a diffusing umbrella. Thermisters recorded internal egg temperature every minute until an asymptotic temperature was reached. Eggs in full sunlight acquired heat more rapidly than eggs in the shaded environment, but heat gain did not vary with egg color in either environment. Eggs placed in Yellow-headed Blackbird nests took longer to reach asymptotic temperature, but there was no significant egg-by-nest interaction. Thus, it appears that differences in reflectivity of eggshell pigments in the visible range (400–700 nm) do not result in different rates of heat acquisition. The thermoregulation hypothesis was not supported.  相似文献   
989.
The Pho regulon is controlled by the histidine kinase-response regulator pair SphS–SphR in many cyanobacteria and up-regulation of the Pho regulon can be monitored by measuring alkaline phosphatase activity. However, the mechanism regulating signal transduction between SphS and SphR has not been described. We have created a cyanobacterial strain allowing the introduction of mutations into the transmitter domain of SphS. Mutations at Thr-167, adjacent to the H motif of SphS, introduce elevated alkaline phosphatase activity in the presence of phosphate and an enhancement of alkaline phosphatase activity, when compared to the control strain, in phosphate-limiting media. SphU acts as a negative regulator of the SphS–SphR system in Synechocystis sp. PCC 6803 and we show that constitutive alkaline phosphatase activity in the absence of SphU requires signal transduction through SphS and SphR. However, constitutive activity in the absence of SphU is severely attenuated in the ΔSphU:SphS-T167N mutant. Our data suggest that Thr-167 contributes to the mechanism underlying regulation by SphU. We have also assembled a deletion mutant system allowing the introduction of mutations into SphR and show that Gly-225 and Trp-236, which are both conserved in SphR from cyanobacteria, are essential for activation of the Pho regulon under phosphate-limiting conditions.  相似文献   
990.
1. The influence of interspecific hybridization on temperature preferences and morphology was examined in newts, Triturus carnifex and Triturus dobrogicus, before and after metamorphosis.

2. Thermoregulatory behavior was measured in an aquatic thermal gradient (5–32.5 °C) during 24 h.

3. Hybrid temperature preferences were similar to preferences of maternal species in both premetamorphic larvae and recently metamorphosed individuals.

4. Hybrid morphology (i.e., forelimb length and axilla–groin distance) was intermediate relative to parental species.

5. The mismatch between morphology and thermal preference in hybrid phenotypes indicates potential hybrid disadvantage in both intermediate and parental habitats.

Keywords: Hybridization; Hybrid intermediacy; Preferred body temperature; Amphibians; Salamandridae; Metamorphosis; Larvae  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号