首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2078篇
  免费   513篇
  国内免费   730篇
  2024年   21篇
  2023年   96篇
  2022年   96篇
  2021年   139篇
  2020年   148篇
  2019年   188篇
  2018年   175篇
  2017年   168篇
  2016年   128篇
  2015年   111篇
  2014年   143篇
  2013年   132篇
  2012年   103篇
  2011年   117篇
  2010年   120篇
  2009年   119篇
  2008年   142篇
  2007年   147篇
  2006年   110篇
  2005年   110篇
  2004年   104篇
  2003年   96篇
  2002年   71篇
  2001年   69篇
  2000年   57篇
  1999年   49篇
  1998年   52篇
  1997年   40篇
  1996年   34篇
  1995年   40篇
  1994年   36篇
  1993年   18篇
  1992年   24篇
  1991年   14篇
  1990年   18篇
  1989年   12篇
  1988年   14篇
  1987年   10篇
  1986年   3篇
  1985年   7篇
  1984年   11篇
  1983年   6篇
  1982年   9篇
  1981年   3篇
  1980年   2篇
  1979年   3篇
  1978年   2篇
  1977年   1篇
  1958年   3篇
排序方式: 共有3321条查询结果,搜索用时 18 毫秒
21.
Soil samples from forest and agricultural sites in three areas of southwest France were collected to determine the effect of forest conversion to continuous intensive corn cropping with no organic matter management on soil organic carbon (C) content. Soils were humic loamy soils and site characteristics that may affect soil C were as uniform as possible (slope, elevation, texture, soil type, vegetation). Three areas were selected, with adjacent sites of various ages of cultivation (3 to 35 yr), and paired control forest sites. The ploughed horizon (0-Dt cm) and the Dt-50 cm layer were collected at each agricultural site. In forest sites, each 10 cm layer was collected systematically down to 1 meter depth. Carbon concentrations were converted to total content to a given depth as the product of concentration, depth of sample and bulk density, and expressed in units of kg m-2. For each site and each sampled layer, the mineral mass of soil was calculated, in order to base comparisons on the same soil mass rather than the same depth. The pattern of C accumulation in forest soils showed an exponential decrease with depth. Results suggested that soil organic carbon declined rapidly during the first years of cultivation, and at a slower rate thereafter. This pattern of decrease can be fitted by a bi-exponential model assuming that initial soil organic carbon can be separated into two parts, a very labile pool reduced during the first rapid decline and more refractory fractions oxidizing at a slower rate. Sampling to shallow depths (0-Dt cm) resulted in over-estimation of the rate of carbon release in proportion to the initial amount of C, and in under-estimation of the total loss of C with age. The results for the 0–50 cm horizon indicated that losses of total carbon average about 50% in these soils, ranging in initial carbon content from 19 to 32.5 kg m-2. Carbon release to the atmosphere averaged 0.8 kg m-2 yr-1 to 50 cm depth during the first 10 years of cultivation. The results demonstrate that temperate soils may also be an important source of atmospheric carbon, when they are initially high in carbon content and then cultivated intensively with no organic matter management.  相似文献   
22.
A field study was undertaken to establish the demand for P by mixed herbage, manipulated by cutting regimes, and the extent to which orthophosphate alone in soil solution could meet this demand from three cambisols derived from different parent materials. Differences in soil types were sufficient to produce significantly different rooting patterns at each site. Yields for 7-and 10-cm treatments generally exceeded those for swards cut to 2-and 4-cm. The highest yields were from plots cut once at the end of the season, or when herbage was cut in June and October only. Yields fell in the second season by an average of 30%. Two cuts in the season resulted in almost twice the P uptake compared with other treatments, leading to the view that a silage cut stimulated root growth. Rooting was deepest in Tarves Association soil (Dystric cambisol), densest in Insch Association soil (Eutric cambisol) and intermediate in Foudland Association soil (Dystric cambisol) but herbage yield at each site was similar. Whole season mean P and N content in roots ranged from 1.0 to 3.4 and from 8.1 to 27.9 mg g–1 dry weight, respectively. The lowest values were in once cut herbage and were half those in herbage cut in June and October only. Data for the total P resources of the soils, extractable P, and shoot and root P at each site are presented together with data for P in soil solution (principally organic) from an associated soil solution study. There was a disparity between daily uptake and orthophosphate in soil solution. These findings suggested that it was probable that soluble organic forms of P are important for P nutrition in these nutrient poor soils, and could account for the excess of observed P uptake (from soils low in P) over that predicted by mechanistic mathematical models.  相似文献   
23.
We present the results of a 5-year examination of variation in the stable carbon isotope composition () of three C3 graminoid species from a Sandhills prairie: Agropyron smithii, Carex heliophila and Stipa comata. Although consistent species-specific patterns for mean were seen, there was also significant and substantial among-year and within-season variation in . A smaller contribution to variation in came from topographic variation among sampling sites. Effects of species, year, season and topography contribute to variation in in an additive manner. An association between climate and exists that is consistent with previous work suggesting that reflects the interplay between photosynthetic gas exchange and plant water relations. Within the growing season, the time over which integrates plant response to the environment ranges from days to months.  相似文献   
24.
W. Schaaf  W. Zech 《Plant and Soil》1993,152(2):277-285
Element budgets of a heavily damaged Norway spruce ecosystem at Hohe Matzen in the Fichtel Mountains/FRG were studied over 3 years. The trees show severe symptoms of decline and Mg deficiency. The soil is a typic Dystrochrept derived from granite with sandy texture, high stone content, and low base saturation. The budgets show high releases of N, S and Al from the ecosystem as a result of input, buffering and turnover processes. After an increase of proton fluxes in the organic surface layer, a strong reduction of protons in the B horizon was found. This process was accompanied by the release of Al, whereas reactive Al(OH)3 was exhausted in the A horizon. The low ANC is also shown in pH-stat.-titrations. The data indicate a strong mineralisation in the humus layer, which results in a net release of NH4, SO4 and TOC. Nitrification takes place mainly in the A horizon. With respect to the N-budget, the ecosystem is approaching the state of N saturation. The processes of N turnover lead to an internal proton production exceeding the atmospheric input, and thus contributing to soil acidification.  相似文献   
25.
Most estimates of regional and global soil carbon stocks are based on extrapolations of mean soil C contents for broad categories of soil or vegetation types. Uncertainties exist in both the estimates of mean soil C contents and the area over which each mean should be extrapolated. Geographic information systems now permit spatially referenced estimates of soil C at finer scales of resolution than were previously practical. We compared estimates of total soil C stocks of the state of Maine using three methods: (1) multiplying the area of the state by published means of soil C for temperate forests and for Spodosols; (2) calculating areas of inclusions of soil taxa in the 1:5,000,000 FAO/UNESCO Soils Map of the World and multiplying those areas by selected mean carbon contents; and (3) calculating soil C for each soil series and map unit in the 1:250,000 State Soil Geographic Data Base (STATSGO) and summing these estimates for the entire state. The STATSGO estimate of total soil C was between 23% and 49% higher than the common coarse scale extrapolations, primarily because STATSGO included data on Histosols, which cover less than 5% of the area of the state, but which constitute over one-third of the soil C. Spodosols cover about 65% of the state, but contribute less than 39% of the soil C. Estimates of total soil C in Maine based on the FAO map agreed within 8% of the STATSGO estimate for one possible matching of FAO soil taxa with data on soil C, but another plausible matching overestimated soil C stocks. We also compared estimates from the 1:250,000 STATSGO database and from the 1:20,000 Soil Survey Geographic Data Base (SSURGO) for a 7.5 minute quadrangle within the state. SSURGO indicated 13% less total soil C than did STATSGO, largely because the attribute data on depths of soil horizons in SSURGO are more specific for this locality. Despite localized differences, the STATSGO database offers promise of scaling up county soil survey data to regional scales because it includes attribute data and estimates of areal coverage of C-rich inclusions within map units. The spatially referenced data also permit examination of covariation of soil C stocks with soil properties thought to affect stabilization of soil C. Clay content was a poor predictor of soil C in Maine, but drainage class covaried significantly with soil C across the state.  相似文献   
26.
Cycling of six mineral elements (N, P, K, Na, Ca and Mg) was studied in a humid subtropical grassland at Cherrapunji, north-eastern India during 1988-1989. Elemental concentrations in the shoot of four dominant grass species,viz., Arundinella khaseana, Chrysopogon gryllus, Eragrostiella leioptera andEulalia trispicata were very low, and none of the species appears suitable for fodder use. Among different vegetation compartments, live root was the largest reservoir of all the nutrients (except Ca) followed by live shoot, dead shoot, litter and dead root. For Ca, live shoot was the major storage compartment. The total annual uptake (kg ha-1) was 137.3, 10.4, 51.1, 5.5, 8.7 and 18.2 for N, P, K, Na, Ca and Mg, respectively. In an annual cycle 98% N, 77% P, 49% K, 109% Na, 87% Ca and 65% Mg returned to the soil through litter and belowground detritus. A major portion of N, P and Na was recycled through the belowground system, whereas nearly half of K, Ca and Mg was recycled through the shoot system. Precipitation acts as the source of N and P input, but at the same time causes loss of cations.  相似文献   
27.
Gary Brown 《Plant Ecology》1994,115(1):77-90
The vegetation at various sites within two separate areas (Mechernich and Aachen) of the Eifel Mountains, Germany/Belgium, both characterized by elevated concentrations of heavy metals in their soils, was surveyed in order to investigate the relationships between soil chemical attributes and floristic composition. In both areas, the typical heavy metal communities can form distinct zones, clearly separated from the surrounding heavy metal-sensitive vegetation. However, an intergrading of heavy metal-tolerant and-sensitive vegetation types is not uncommon and such overlaps can occupy large areas. In Mechernich, soil toxicity is primarily determined by the effects of lead, which is best expressed in terms of the Pb/Ca ratio rather than the absolute levels of this metal in the soil. Soils of heavy metal-sensitive vegetation types have a low Pb/Ca ratio, whereas it is considerably higher in areas supporting heavy metal vegetation. Zinc appears to exert little influence on the floristic composition of the investigated vegetation types. In Aachen, zinc is the predominant heavy metal determining vegetation development. Absolute zinc levels of soils do not accurately reflect zinc toxicity. Analogous to the role of the Pb/Ca ratio in the Mechernich area, the Zn/Ca ratio not only separates heavy metal-sensitive and highly tolerant vegetation units, but also gives a good indication of the gradient operating between the two vegetation types. Lead is probably only of local importance in influencing species composition.  相似文献   
28.
Losses of grasslands have been largely attributed to widespread land-use changes, such as conversion to row-crop agriculture. The remaining tallgrass prairie faces further losses due to biological invasions by non-native plant species, often with resultant ecosystem degradation. Of critical concern for conservation, restoration of native grasslands has been met with little success following eradication of non-native plants. In addition to the direct and indirect effects of non-native invasive plants on beneficial soil microbes, management practices targeting invasive species may also negatively affect subsequent restoration efforts. To assess mechanisms limiting germination and survival of native species and to improve native species establishment, we established six replicate plots of each of the following four treatments: (1) inoculated with freshly collected prairie soil with native seeds; (2) inoculated with steam-pasteurized soil with native seeds; (3) noninoculated with native seeds; or (4) noninoculated/nonseeded control. Inoculation with whole soil did not improve seed germination; however, addition of whole soil significantly improved native species survival, compared to pasteurized soil or noninoculated treatments. Inoculation with whole soil significantly decreased reestablishment of non-native invasive Bothriochloa bladhii (Caucasian bluestem); at the end of the growing season, plots receiving whole soil consisted of approximately 30% B. bladhii cover, compared to approximately 80% in plots receiving no soil inoculum. Our results suggest invasion and eradication efforts negatively affect arbuscular mycorrhizal hyphal and spore abundances and soil aggregate stability, and inoculation with locally adapted soil microbial communities can improve metrics of restoration success, including plant species richness and diversity, while decreasing reinvasion by non-native species.  相似文献   
29.
Identifying the drivers of community structure and dynamics is a major pursuit in ecology. Emphasis is typically placed on the importance of local scale interactions when attempting to explain these fundamental ecological patterns. However, regional scale phenomena are also important predictors. The importance of regional scale context should be more evident in assemblages where multiple species are close to their range margins. Here, we test the importance of regional scale context using data from a temperate forest plot that contains two species groups – one near its northern range limit and one near its southern range limit. We show the proximity of species to their southern or northern range margins is linked to local scale co-occurrence, similarity in gene expression responses to a key environmental driver, demographic performance and inter-specific variation in conspecific negative density dependence. In sum, many of the key local scale patterns and processes of interest to community ecologists are linked to biogeographic context that is frequently ignored.  相似文献   
30.

Aims

Shallow soils on acidic bedrock in dry areas of Central Europe support dry grasslands and heathlands that were formerly used as extensive pastures. These habitats are of high conservation value, but their abandonment in the 20th century triggered slow natural succession that poses a threat to specialized plant species. We asked how this vegetation and its plant diversity have changed over the past three decades and whether protected areas have positively affected habitat quality.

Location

Southwestern and central Moravia, Czech Republic.

Methods

In 2018–2019, we resurveyed 94 vegetation plots first sampled in 1986–1991 at 47 acidic dry grassland and heathland sites. We compared the number of all vascular plant species, Red List species and alien species per plot using parametric and non-parametric tests, life-form spectra using the chi-square test, species composition using detrended correspondence analysis, and indicator values using a permutation test. We also compared these changes between sites within and outside protected areas.

Results

Vegetation changes over the past three decades have been relatively small. However, we detected a decrease in total species richness, the number of Red List species and the number of characteristic species of dry grasslands. Neophytes were infrequent, while archaeophytes increased slightly. The competitive tall grass Arrhenatherum elatius, annual species and young woody plants increased in abundance or newly established at many sites. Indicator values did not change except for a slight increase in nutrient values. These negative trends occurred both within and outside protected areas but were more pronounced outside.

Conclusions

Formerly grazed acidic dry grasslands and heathlands in Moravia are slowly losing habitat specialists, including threatened plant species, and are increasingly dominated by Arrhenatherum elatius. Conservation management, especially cutting in protected areas, slows down the negative trends of decline in plant diversity and habitat quality but is insufficient to halt these processes completely.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号