首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8617篇
  免费   1586篇
  国内免费   2672篇
  2024年   61篇
  2023年   269篇
  2022年   220篇
  2021年   374篇
  2020年   521篇
  2019年   544篇
  2018年   505篇
  2017年   487篇
  2016年   496篇
  2015年   490篇
  2014年   453篇
  2013年   539篇
  2012年   419篇
  2011年   443篇
  2010年   433篇
  2009年   487篇
  2008年   552篇
  2007年   593篇
  2006年   556篇
  2005年   503篇
  2004年   474篇
  2003年   392篇
  2002年   381篇
  2001年   356篇
  2000年   335篇
  1999年   296篇
  1998年   276篇
  1997年   206篇
  1996年   170篇
  1995年   155篇
  1994年   131篇
  1993年   115篇
  1992年   121篇
  1991年   86篇
  1990年   92篇
  1989年   66篇
  1988年   48篇
  1987年   45篇
  1986年   45篇
  1985年   25篇
  1984年   29篇
  1983年   19篇
  1982年   23篇
  1981年   4篇
  1980年   12篇
  1979年   7篇
  1978年   7篇
  1977年   7篇
  1976年   3篇
  1958年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
Experimental study of the effects of projected climate change on plant phenology allows us to isolate effects of warming on life‐history events such as leaf out. We simulated a 2 °C temperature increase and 20% precipitation increase in a recently harvested temperate deciduous forest community in central Pennsylvania, USA, and observed the leaf out phenology of all species in 2009 and 2010. Over 130 plant species were monitored weekly in study plots, but due to high variability in species composition among plots, species were grouped into five functional groups: short forbs, tall forbs, shrubs, small trees, and large trees. Tall forbs and large trees, which usually emerge in the late spring, advanced leaf out 14–18 days in response to warming. Short forbs, shrubs, and small trees emerge early in spring and did not alter their phenology in response to warming or increased precipitation treatments. Earlier leaf out of tall forbs and large trees coincided with almost 3 weeks of increased community‐level leaf area index, indicating greater competition and a condensed spring green‐up period. While phenology of large trees and tall forbs appears to be strongly influenced by temperature‐based growth cues, our results suggest that photoperiod and chilling cues more strongly influence the leaf out of other functional groups. Reduced freeze events and warmer temperatures from predicted climate change will interact with nontemperature growth cues to have cascading consequences throughout the ecosystem.  相似文献   
972.
We identified the extent to which ant diversity occurs despite conversion of forests into cocoa plantations by examining the communities across four age classes of plantations (classes I–IV with increasing age from 0–5 to 21–40 years) and in their original forests. An extensive sampling protocol consisting of pitfall trapping, leaf litter sampling, soil sampling and hand sampling was used to characterize ant species richness and composition in three replicates of each age class and in the remaining forest patches. A total of one hundred ant species was found in all habitats combined. While the forest was the richest habitat (73 species), species richness in the different plantation age classes varied as follows (sorted in descending order): class IV (69 species) > class III (57 species) > class I (52 species) > class II (43 species). Age gradient was thus significantly positively correlated with mean species richness and with the relative abundance of some subfamilies. The species composition differed greatly between some plantation age classes and the forest. The two youngest cocoa age classes (I and II) were most dissimilar to the forest. In contrast, forest ants were well represented in the old cocoa age classes (III and IV). Three functional guilds (generalist predators, specialist predators and territorially dominant arboreal species) were in their relative abundance significantly correlated to the age gradient. Overall, cocoa cultivations retaining a floristically diverse and structurally complex forest structure are a suitable management system for the conservation of ant species of the formerly forested habitats.  相似文献   
973.
Rising temperatures are predicted to cause temperate tree species to expand north into currently boreal dominated forests. Other factors, such as overabundant deer, may hinder temperate expansion. We examined how interactions among temperature, browse pressure, light availability, and initial size impact height and radial growth of naturally regenerated, competing temperate and boreal saplings across their overlapping range limits in central North America. In 9 of 10 growth model comparisons, the inclusion of mean summer temperature and browse damage as explanatory variables strongly improved model performance over the base model with only initial size and light availability as parameters. Potential growth reductions due to browse damage and temperature limitation were similar in magnitude (up to ~50%). Temperate sapling growth increased and boreal growth decreased with temperature across a regional summer temperature gradient (2.3 °C), causing a rank reversal in growth rates, and suggesting that temperature is a key driver of sapling performance and range boundaries. However, under high browse pressure positive temperate responses to temperature were eliminated, essentially pushing the crossover point in growth between temperate and boreal species further south. These results highlight the importance of interactions among global change agents and potential impediments for tree species to track a rapidly changing climate.  相似文献   
974.
The long residence time of carbon in forests and soils means that both the current state and future behavior of the terrestrial biosphere are influenced by past variability in climate and anthropogenic land use. Over the last half‐millennium, European terrestrial ecosystems were affected by the cool temperatures of the Little Ice Age, rising CO2 concentrations, and human induced deforestation and land abandonment. To quantify the importance of these processes, we performed a series of simulations with the LPJ dynamic vegetation model driven by reconstructed climate, land use, and CO2 concentrations. Although land use change was the major control on the carbon inventory of Europe over the last 500 years, the current state of the terrestrial biosphere is largely controlled by land use change during the past century. Between 1500 and 2000, climate variability led to temporary sequestration events of up to 3 Pg, whereas increasing atmospheric CO2 concentrations during the 20th century led to an increase in carbon storage of up to 15 Pg. Anthropogenic land use caused between 25 Pg of carbon emissions and 5 Pg of uptake over the same time period, depending on the historical and spatial pattern of past land use and the timing of the reversal from deforestation to afforestation during the last two centuries. None of the currently existing anthropogenic land use change datasets adequately capture the timing of the forest transition in most European countries as recorded in historical observations. Despite considerable uncertainty, our scenarios indicate that with limited management, extant European forests have the potential to absorb between 5 and 12 Pg of carbon at the present day.  相似文献   
975.
Variation in soil properties may influence diversity of invertebrate communities, a crucial component of every ecosystem, and their impact should be considered also in restoration management. Although most spoil heaps have been reclaimed after brown coal mining, some post‐mining sites are left to natural succession. Little is known, however, about the effects of these two fundamentally different approaches on diversity of invertebrates inhabiting these stands. While controlling for habitat characteristics, we analyzed the effects of soil properties on species richness of seven invertebrate groups representing various trophic levels and diverse spatial niches at afforested spoil heaps and adjacent pits managed under these two basic restoration approaches in the North Bohemia Brown Coal Basin (Czech Republic, central Europe). Forty‐seven percentage of 140 invertebrate species occurred on both reclamations and successions, but many were found exclusively on successions (37%) or reclamations (16%). The species richness of various groups was affected by different soil properties either independently of other variables or in interaction with microclimatic conditions or management history. These results imply a need for diverse management approaches in post‐mining areas to support the diversity of invertebrate communities. Technical reclamations with artificial plantations and spontaneous forest development on bare substrate (thus creating mosaics of open patches and afforested stands with different soil deposit materials) were found to be reasonable alternatives to support invertebrate richness on post‐mining forested stands. We conclude that these two approaches should properly be combined in practice.  相似文献   
976.
Fire suppression has altered the uplands of northern Mississippi (U.S.A.). Once blanketed by open oak woodlands, this region is now experiencing mesophytic tree invasion, canopy closure, reduced oak regeneration, and herbaceous understory loss. In an attempt to reestablish historical conditions, experimental restoration was initiated through thinning and burning treatments. Our study, part of a comprehensive monitoring effort, is the first to examine the impact of oak woodland restoration on the spider community and associated habitat structure. Samples measuring a variety of environmental variables and utilizing an array of spider collecting techniques were taken within four habitats located at the restoration site: fire‐suppressed forest, moderately treated forest, intensely treated forest, and old field. Two main conclusions resulted from this study. (1) Open‐habitat specialists responded positively to increased canopy openness regardless of the availability of herbaceous vegetation. (2) Woodland restoration increased spider diversity, perhaps through the formation of diverse habitat structure and/or by altering species dominance patterns. A rise in open‐habitat specialist diversity was observed as treatment intensity increased, with no compensatory reduction in the diversity of forest specialists. What remains to be seen is whether the continued transition to open woodland habitat will result in losses of forest specialist species. More aggressive overstory tree thinning is currently being administered to encourage the growth of herbaceous grasses and forbs, which will permit future tests of a hypothesized decline in forest specialists.  相似文献   
977.
978.
979.
980.
Light requirements and functional strategies of plants to cope with light heterogeneity in the field have a strong influence on community structure and dynamics. Shade intolerant plants often show a shade avoidance strategy involving a phytochrome‐mediated stem elongation in response to changes in red : far red ratio, while shade‐tolerant plants typically harvest light very efficiently. We measured plant size, stem diameter, internode and leaf lengths in randomly chosen saplings of 11 woody species differing in their shade tolerance in both a secondary forest and an old‐growth temperate evergreen rainforest in southern Chile. We also recorded the irradiance spectrum and the diffuse and direct light availabilities at each sampling point. Significant differences were found for the mean light environment of the saplings of each species, which also differed in basal stem diameter, internode length and leaf length, but not in plant height. Both plant slenderness (plant height/stem diameter) and mean internode length increased with increasing light availability, but no relationship was found between any of these two traits and red : far red ratio. The change in plant slenderness with light availability was of lesser magnitude with increasing shade tolerance of the species, while internode change with light availability increased with increasing shade tolerance of the species. Shade tolerators afford higher costs (thicker stems and plants), which render more biomechanically robust plants, and respond more to the light environment in a trait strongly influencing light interception (internode length) than shade intolerant species. By contrast, less shade‐tolerant plants afforded higher risks with a plastic response to escape from the understorey by making thinner plants that were biomechanically weaker and poorer light interceptors. Thus, species differing in their shade tolerances do differ in their plastic responses to light. Our results contribute to explain plant coexistence in heterogeneous light environments by improving our mechanistic understanding of species responses to light.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号