首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   3篇
  85篇
  2023年   1篇
  2021年   3篇
  2020年   2篇
  2019年   2篇
  2018年   3篇
  2017年   4篇
  2015年   2篇
  2013年   3篇
  2010年   2篇
  2009年   2篇
  2008年   8篇
  2007年   2篇
  2006年   1篇
  2004年   4篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   4篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   5篇
  1994年   3篇
  1993年   3篇
  1992年   3篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1984年   1篇
  1982年   3篇
  1981年   3篇
  1980年   2篇
  1979年   1篇
  1977年   1篇
排序方式: 共有85条查询结果,搜索用时 15 毫秒
41.
《Developmental neurobiology》2017,77(10):1206-1220
Adult neurogenesis occurs more commonly in teleosts, represented by zebrafish, than in mammals. Zebrafish is therefore considered a suitable model to study adult neurogenesis, for which the regulatory molecular mechanisms remain little known. Our previous study revealed that neuroepithelial‐like neural stem cells (NSCs) are located at the edge of the dorsomedial region. We also showed that Notch signaling inhibits NSC proliferation in this region. In the present study, we reported the expression of Wnt and Shh signaling components in this region of the optic tectum. Moreover, inhibitors of Wnt and Shh signaling suppressed NSC proliferation, suggesting that these pathways promote NSC proliferation. Shh is particularly required for maintaining Sox2‐positive NSCs. Our experimental data also indicate the involvement of these signaling pathways in neural differentiation from NSCs. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1206–1220, 2017  相似文献   
42.
Multimodal neuronal maps, combining input from two or more sensory systems, play a key role in the processing of sensory and motor information. For such maps to be of any use, the input from all participating modalities must be calibrated so that a stimulus at a specific spatial location is represented at an unambiguous position in the multimodal map. Here we discuss two methods based on supervised spike-timing-dependent plasticity (STDP) to gauge input from different sensory modalities so as to ensure a proper map alignment. The first uses an excitatory teacher input. It is therefore called excitation-mediated learning. The second method is based on an inhibitory teacher signal, as found in the barn owl, and is called inhibition-mediated learning. Using detailed analytical calculations and numerical simulations, we demonstrate that inhibitory teacher input is essential if high-quality multimodal integration is to be learned rapidly. Furthermore, we show that the quality of the resulting map is not so much limited by the quality of the teacher signal but rather by the accuracy of the input from other sensory modalities.  相似文献   
43.
44.
Exoglycoproteins (X-GPs) are a group of very abundant soluble glycoproteins in the goldfish, brain. Immunostaining with polyclonal antisera to X-GPs revealed consistent perinuclear staining in the cells of the inner and intermediate layers of the leptomeninx, which is homologous to the piaarachnoid. Immunolabelling was also prominent in the outer wall of capillaries, and in a variable population of 10–12 m granular cells that appeared mainly near the ventricles and occasionally within the ventricles or under the meninges. In some cases, small and medium-sized lymphocytes were immunostained. Lymphocytes were sometimes associated with the granular cells, which may be hematogenous cells in transit toward the ventricles. the choroid plexus, saccus dorsalis, the roof of the third ventricle and Reissner's fiber showed strong immunostaining. The localization of the X-GPs suggests that they may contribute to maintenance of the blood-brain barrier or to regulation of immune function within the brain.Special issue dedicated to Dr. Sidney Ochs.  相似文献   
45.
46.
Summary In the elasmobranch fish, Scyllium stellare, a complex group of cells protrudes into the cavity of the mesencephalic ventricle of the optic tectum. It consists of six to seven large spherical perikarya which resemble neurons of the mesencephalic nucleus of the Vth cranial nerve. The bundled processes of these cells form a stalk connecting the protrusion with the brain tissue. The protrusion is located in the region where the mesencephalic ventricle joins the cerebral aqueduct. This complex was not found in all specimens examined in the present study. The functional role of this peculiar group of cells, which contain dense core granules and are bathed in the cerebrospinal fluid, is open to discussion.  相似文献   
47.
Glutamate was coupled via glutaraldehyde to bovine serum albumin. The conjugate was used for raising specific anti-glutamate antibodies. The purified antibody was used for immunostaining of chick cerebellum and optic tectum. Staining was intense in the molecular layer and in cell bodies of the granule cell layer. In the optic tectum a diffuse staining was detected in the superficial layers of stratum griseum fibrosum superficiale and in cell bodies especially in the layers a and e. Large cell bodies located in the stratum griseum centrale were also stained.  相似文献   
48.
In zebrafish brains, populations of continuously proliferating cells are present during an entire life span. Under normal conditions, stem cells give rise to rapidly proliferating progenitors that quickly exit the cell cycle and differentiate. Hence fish are favorable models to study what regulates postembryonic neurogenesis. The aim of this study was to determine if optic tectum (OT) cell proliferation is halted during nutritional deprivation (ND) and whether or not it can be restored with refeeding. We examined the effect of ND on the proliferation of Neuroepithelial/Ependymal Progenitor cell (NeEPC) and transitory‐amplifying progenitors (TAPs). Following ND, no PCNA immunostaining was found in OT of starved fish, while positive cell populations of PCNA positive progenitors are found at its periphery in control fish. This indicated that active proliferation stopped. To label retaining progenitor cells, BrdU was applied and a chase‐period was accompanied by ND. Positive NeEPCs were detected in the external tectum marginal zone of starved fish suggesting that these progenitors are relatively immune to ND. Moreover in the internal tectum marginal zone labeled retaining cells were observed leaving the possibility that some arrested TAPs were present to readily restart proliferation when nutrition was returned. Our results suggest that neurogenesis was maintained during ND and that a normal proliferative situation was recovered after refeeding. We point to the mTOR pathway as a necessary pathway in progenitors to regulate their mitosis activity. Thus, this study highlights mechanisms involved in neural stem and progenitor cell homeostatic maintenance in an adverse situation. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 26–38, 2017  相似文献   
49.
Each tectal lobe of Xenopus forgs receives two topographic maps, one via the ipsilateral eye and one via the contralateral eye. The alignment of the ipsilateral map with the contralateral map depends upon bincoular visual input during a critical period that extends from late tadpole to early juvenile stages. Rotation of one eye during the critical period leads to reorganization of the ipsilateral map, which eventually comes back into alignment with the contralateral map despite the abnormal eye position. The ipsilateral eye's map initially develops as if there had been no alteration in eye position; there is a delay of 4–6 weeks before reorganization can be detected by electrophysiological mapping. In this paper, the possible role of the NMDA receptor in the delay in reorganization is addressed. The degree of NMDA receptor activation may need to be above some threshold level to trigger reorganization. If NMDA receptor activation normally is below that level until after the first month postmetamorphosis, then exogenous NMDA might boost the process sufficiently to start the reorganization process sooner than usual. In order to test this possibility, the left eye of tadpoles was rotated and NMDA was applied to the right tectal lobe for 3–5 weeks, starting at 1 week postmetamorphosis. Electrophysiological mapping demonstrated that reorganization takes place more rapidly than in untreated forgs or frogs treated with vehicle only. This result is consistent with the interpretation that the activation of the NMDA receptor is a rate-limiting step in the activity-dependent matching of binocular maps in Xenopus tectum. 1994 John Wiley & Sons, Inc.  相似文献   
50.
Sound localization is a computational process that requires the central nervous system to measure various auditory cues and then associate particular cue values with appropriate locations in space. Behavioral experiments show that barn owls learn to associate values of cues with locations in space based on experience. The capacity for experience-driven changes in sound localization behavior is particularly great during a sensitive period that lasts until the approach of adulthood. Neurophysiological techniques have been used to determine underlying sites of plasticity in the auditory space-processing pathway. The external nucleus of the inferior colliculus (ICX), where a map of auditory space is synthesized, is a major site of plasticity. Experience during the sensitive period can cause large-scale, adaptive changes in the tuning of ICX neurons for sound localization cues. Large-scale physiological changes are accompanied by anatomical remodeling of afferent axons to the ICX. Changes in the tuning of ICX neurons for cue values involve two stages: (1) the instructed acquisition of neuronal responses to novel cue values and (2) the elimination of responses to inappropriate cue values. Newly acquired neuronal responses depend differentially on NMDA receptor currents for their expression. A model is presented that can account for this adaptive plasticity in terms of plausible cellular mechanisms. Accepted: 17 April 1999  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号