首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   336篇
  免费   82篇
  国内免费   43篇
  461篇
  2024年   1篇
  2023年   2篇
  2022年   10篇
  2021年   26篇
  2020年   30篇
  2019年   28篇
  2018年   16篇
  2017年   31篇
  2016年   23篇
  2015年   37篇
  2014年   49篇
  2013年   42篇
  2012年   16篇
  2011年   15篇
  2010年   19篇
  2009年   7篇
  2008年   11篇
  2007年   17篇
  2006年   17篇
  2005年   13篇
  2004年   11篇
  2003年   7篇
  2002年   6篇
  2001年   3篇
  2000年   2篇
  1999年   5篇
  1998年   1篇
  1997年   5篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
  1981年   1篇
排序方式: 共有461条查询结果,搜索用时 19 毫秒
451.
452.
 The diffusion approximation is derived for migration and selection at a multiallelic locus in a partially selfing plant population subdivided into a lattice of colonies. Generations are discrete and nonoverlapping; both pollen and seeds disperse. In the diffusion limit, the genotypic frequencies at each point are those determined at equilibrium by the local rate of selfing and allelic frequencies. If the drift and diffusion coefficients are taken as the appropriate linear combination of the corresponding coefficients for pollen and seeds, then the migration terms in the partial differential equation for the allelic frequencies have the standard form for a monoecious animal population. The selection term describes selection on the local genotypic frequencies. The boundary conditions and the unidimensional transition conditions for a geographical barrier and for coincident discontinuities in the carrying capacity and migration rate have the standard form. In the diallelic case, reparametrization renders the entire theory of clines and of the wave of advance of favorable alleles directly applicable to plant populations. Received 30 August 1995; received in revised form 23 February 1996  相似文献   
453.
The unicellular green alga Chlamydomonas reinhardtii is a versatile model for fundamental and biotechnological research. A wide range of tools for genetic manipulation have been developed for this alga, but specific modification of nuclear genes is still not routinely possible. Here, we present a nuclear gene targeting strategy for Chlamydomonas that is based on the application of zinc‐finger nucleases (ZFNs). Our approach includes (i) design of gene‐specific ZFNs using available online tools, (ii) evaluation of the designed ZFNs in a Chlamydomonas in situ model system, (iii) optimization of ZFN activity by modification of the nuclease domain, and (iv) application of the most suitable enzymes for mutagenesis of an endogenous gene. Initially, we designed a set of ZFNs to target the COP3 gene that encodes the light‐activated ion channel channelrhodopsin‐1. To evaluate the designed ZFNs, we constructed a model strain by inserting a non‐functional aminoglycoside 3′‐phosphotransferase VIII (aphVIII) selection marker interspaced with a short COP3 target sequence into the nuclear genome. Upon co‐transformation of this recipient strain with the engineered ZFNs and an aphVIII DNA template, we were able to restore marker activity and select paromomycin‐resistant (Pm‐R) clones with expressing nucleases. Of these Pm‐R clones, 1% also contained a modified COP3 locus. In cases where cells were co‐transformed with a modified COP3 template, the COP3 locus was specifically modified by homologous recombination between COP3 and the supplied template DNA. We anticipate that this ZFN technology will be useful for studying the functions of individual genes in Chlamydomonas.  相似文献   
454.
The pollen tube is the most rapidly growing cell in the plant kingdom and has the function to deliver the sperm cells for fertilization. The growing tip region of the cell behaves in a chemotropic manner to respond to the guidance cues emitted by the pistil and the female gametophyte, but how it perceives and responds to these directional triggers is virtually unknown. Quantitative assessment of chemotropic behavior can greatly be enhanced by the administration of pharmacological or other biologically active agents at subcellular precision, which is a technical challenge when the target area moves as it grows. We developed a laminar flow based microfluidic device that allows for continuous administration of two different solutions with a movable interface that permits the dynamic targeting of the growing pollen tube apex over prolonged periods of time. Asymmetric administration of calcium revealed that rather than following the highest calcium concentration as would be expected with simple chemotropic behavior, the pollen tube of Camellia targets an optimal concentration suggesting the presence of two superimposed mechanisms. Subcellular application of pectin methyl esterase (PME), an enzyme that modifies the growth behavior by rigidifying the pollen tube cell wall, caused the tube to turn away from the agent – providing important evidence for a previously proposed conceptual model of the growth mechanism.  相似文献   
455.
This article explores universal normative bases that could help to shape a workable legal construct that would facilitate a global use of advance directives. Although I believe that advance directives are of universal character, my primary aim in approaching this issue is to remain realistic. I will make three claims. First, I will argue that the principles of autonomy, dignity and informed consent, embodied in the Oviedo Convention and the UNESCO Declaration on Bioethics and Human Rights, could arguably be regarded as universal bases for the global use of advance directives. Second, I will demonstrate that, despite the apparent consensus of ethical authorities in support of their global use, it is unlikely, for the time being, that such consensus could lead to unqualified legal recognition of advance directives, because of different understandings of the nature of the international rules, meanings of autonomy and dignity which are context‐specific and culture‐specific, and existing imperfections that make advance directives either unworkable or hardly applicable in practice. The third claim suggests that the fact that the concept of the advance directive is not universally shared does not mean that it should not become so, but never as the only option in managing incompetent patients. A way to proceed is to prioritize work on developing higher standards in managing incompetent patients and on progressing towards the realization of universal human rights in the sphere of bioethics, by advocating a universal, legally binding international convention that would outlaw human rights violations in end‐of‐life decision‐making.  相似文献   
456.
Reverse genetics approaches have contributed enormously to the elucidation of gene functions in plastid genomes and the determination of structure–function relationships in chloroplast multiprotein complexes. Gene knock‐outs are usually performed by disrupting the reading frame of interest with a selectable marker cassette. Site‐directed mutagenesis is done by placing the marker into the adjacent intergenic spacer and relying on co‐integration of the desired mutation by homologous recombination. These strategies are not applicable to genes residing in large multigene operons or other gene‐dense genomic regions, because insertion of the marker cassette into an operon‐internal gene or into the nearest intergenic spacer is likely to interfere with expression of adjacent genes in the operon or disrupt cis‐elements for the expression of neighboring genes and operons. Here we have explored the possibility of using a co‐transformation strategy to mutate a small gene of unknown function (psbN) that is embedded in a complex multigene operon. Although inactivation of psbN resulted in strong impairment of photosynthesis, homoplasmic knock‐out lines were readily recovered by co‐transformation with a selectable marker integrating >38 kb away from the targeted psbN. Our results suggest co‐transformation as a suitable strategy for the functional analysis of plastid genes and operons, which allows the recovery of unselected homoplasmic mutants even if the introduced mutations entail a significant selective disadvantage. Moreover, our data provide evidence for involvement of the psbN gene product in the biogenesis of both photosystem I and photosystem II. We therefore propose to rename the gene product ‘photosystem biogenesis factor 1′ and the gene pbf1.  相似文献   
457.
13C metabolic flux analysis (MFA) has become the experimental method of choice to investigate the cellular metabolism of microbes, cell cultures and plant seeds. Conventional steady‐state MFA utilizes isotopic labeling measurements of amino acids obtained from protein hydrolysates. To retain spatial information in conventional steady‐state MFA, tissues or subcellular fractions must be dissected or biochemically purified. In contrast, peptides retain their identity in complex protein extracts, and may therefore be associated with a specific time of expression, tissue type and subcellular compartment. To enable ‘single‐sample’ spatially and temporally resolved steady‐state flux analysis, we investigated the suitability of peptide mass distributions (PMDs) as an alternative to amino acid label measurements. PMDs are the discrete convolution of the mass distributions of the constituent amino acids of a peptide. We investigated the requirements for the unique deconvolution of PMDs into amino acid mass distributions (AAMDs), the influence of peptide sequence length on parameter sensitivity, and how AAMD and flux estimates that are determined through deconvolution compare to estimates from a conventional GC–MS measurement‐based approach. Deconvolution of PMDs of the storage protein β–conglycinin of soybean (Glycine max) resulted in good AAMD and flux estimates if fluxes were directly fitted to PMDs. Unconstrained deconvolution resulted in inferior AAMD and flux estimates. PMD measurements do not include amino acid backbone fragments, which increase the information content in GC–MS‐derived analyses. Nonetheless, the resulting flux maps were of comparable quality due to the precision of Orbitrap quantification and the larger number of peptide measurements.  相似文献   
458.
Large‐scale phenotyping of tip‐growing cells such as pollen tubes has hitherto been limited to very crude parameters such as germination percentage and velocity of growth. To enable efficient and high‐throughput execution of more sophisticated assays, an experimental platform, the TipChip, was developed based on microfluidic and microelectromechanical systems (MEMS) technology. The device allows positioning of pollen grains or fungal spores at the entrances of serially arranged microchannels equipped with microscopic experimental set‐ups. The tip‐growing cells (pollen tubes, filamentous yeast or fungal hyphae) may be exposed to chemical gradients, microstructural features, integrated biosensors or directional triggers within the modular microchannels. The device is compatible with Nomarski optics and fluorescence microscopy. Using this platform, we were able to answer several outstanding questions on pollen tube growth. We established that, unlike root hairs and fungal hyphae, pollen tubes do not have a directional memory. Furthermore, pollen tubes were found to be able to elongate in air, raising the question of how and where water is taken up by the cell. The platform opens new avenues for more efficient experimentation and large‐scale phenotyping of tip‐growing cells under precisely controlled, reproducible conditions.  相似文献   
459.
460.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号