首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18490篇
  免费   894篇
  国内免费   564篇
  19948篇
  2023年   302篇
  2022年   442篇
  2021年   522篇
  2020年   561篇
  2019年   735篇
  2018年   590篇
  2017年   380篇
  2016年   379篇
  2015年   457篇
  2014年   983篇
  2013年   1305篇
  2012年   721篇
  2011年   1044篇
  2010年   706篇
  2009年   820篇
  2008年   879篇
  2007年   910篇
  2006年   763篇
  2005年   675篇
  2004年   604篇
  2003年   487篇
  2002年   404篇
  2001年   294篇
  2000年   219篇
  1999年   248篇
  1998年   257篇
  1997年   204篇
  1996年   225篇
  1995年   178篇
  1994年   169篇
  1993年   147篇
  1992年   155篇
  1991年   130篇
  1990年   120篇
  1989年   110篇
  1988年   114篇
  1987年   118篇
  1986年   111篇
  1985年   195篇
  1984年   284篇
  1983年   231篇
  1982年   255篇
  1981年   208篇
  1980年   224篇
  1979年   218篇
  1978年   179篇
  1977年   140篇
  1976年   123篇
  1975年   112篇
  1974年   112篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
We have recently purified mammalian sterile 20 (STE20)–like kinase 3 (MST3) as a kinase for the multifunctional kinases, AMP-activated protein kinase–related kinases (ARKs). However, unresolved questions from this study, such as remaining phosphorylation activities following deletion of the Mst3 gene from human embryonic kidney cells and mice, led us to conclude that there were additional kinases for ARKs. Further purification recovered Ca2+/calmodulin-dependent protein kinase kinases 1 and 2 (CaMKK1 and 2), and a third round of purification revealed mitogen-activated protein kinase kinase kinase kinase 5 (MAP4K5) as potential kinases of ARKs. We then demonstrated that MST3 and MAP4K5, both belonging to the STE20-like kinase family, could phosphorylate all 14 ARKs both in vivo and in vitro. Further examination of all 28 STE20 kinases detected variable phosphorylation activity on AMP-activated protein kinase (AMPK) and the salt-inducible kinase 3 (SIK3). Taken together, our results have revealed novel relationships between STE20 kinases and ARKs, with potential physiological and pathological implications.  相似文献   
992.
Angiogenic factor AGGF1 (AngioGenic factor with G-patch and FHA (Forkhead-Associated) domain 1) blocks neointimal formation (formation of a new or thickened layer of arterial intima) after vascular injury by regulating phenotypic switching of vascular smooth muscle cells (VSMCs). However, the AGGF1 receptor on VSMCs and the underlying molecular mechanisms of its action are unknown. In this study, we used functional analysis of serial AGGF1 deletions to reveal the critical AGGF1 domain involved in VSMC phenotypic switching. This domain was required for VSMC phenotypic switching, proliferation, cell cycle regulation, and migration, as well as the regulation of cell cycle inhibitors cyclin D, p27, and p21. This domain also contains an RDDAPAS motif via which AGGF1 interacts with integrin α7 (ITGA7), but not α8. In addition, we show that AGGF1 enhanced the expression of contractile markers MYH11, α-SMA, and SM22 and inhibited MEK1/2, ERK1/2, and ELK phosphorylation in VSMCs, and that these effects were inhibited by knockdown of ITGA7, but not by knockdown of ITGA8. In vivo, deletion of the VSMC phenotypic switching domain in mice with vascular injury inhibited the functions of AGGF1 in upregulating α-SMA and SM22, inhibiting MEK1/2, ERK1/2, and ELK phosphorylation, in VSMC proliferation, and in blocking neointimal formation. Finally, we show the inhibitory effect of AGGF1 on neointimal formation was blocked by lentivirus-delivered shRNA targeting ITGA7. Our data demonstrate that AGGF1 interacts with its receptor integrin α7 on VSMCs, and this interaction is required for AGGF1 signaling in VSMCs and for attenuation of neointimal formation after vascular injury.  相似文献   
993.
994.
An efficient protocol was adopted to efficiently prepare three new series of bis(pyrazolo[1,5-a]pyrimidines) linked to different spacers. The new bis(pyrazolo[1,5-a]pyrimidines) were prepared in 80–90 % yields by reacting the respective bis(enaminones) and 4-(4-substituted benzyl)-1H-pyrazole-3,5-diamines in pyridine at reflux temperature for 5–7 h. The new products showed a wide spectrum of antibacterial activity against six different bacterial strains. In general, propane- and butane-linked bis(pyrazolo[1,5-a]pyrimidines), which are attached to 3-(4-methyl- or 4-methoxybenzyl) units, had the best antibacterial activity with minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values up to 2.5 and 5.1 μM, respectively. Additionally, the previous products demonstrated promising MurB inhibitory activity with IC50 values up to 7.2 μM.  相似文献   
995.
本研究探讨部分冷冻或切除小脑蚓部(vermis)对整体豚鼠“踏步自动作用”(steppingautomatism)的影响。“踏步自动作用”由我们近年来发现的诱发踏步物质(SIS)(4-R-2,2,5,5-四(三氟甲基)-咪唑啉)所引起。结果表明部分冷冻或切除小脑蚓部的山顶(culmen,Ⅴ和Ⅳ叶)和中央叶(Centralis,Ⅲa,b)明显增强豚鼠的“踏步自动作用”。冷冻小脑不能触发,但仅能调控“踏步自动作用”。这种调控作用对自动化程度差的弱“踏步自动作用”特别显著。蚓部山顶(Ⅴ叶为主)同时调控左右前肢踏步,而一侧蚓部山顶及其半球则主要调控同侧前肢踏步。此外,本研究的结果表明当介面温度(冷冻头和小脑幕间)致冷至5℃—0℃左右,冷冻小脑便可基本模拟部分切除小脑效应。  相似文献   
996.
After digestion by TaqI or nicking by DNAase I, five highly modified bacteriophage DNAs were tested as substrates for T4 DNA ligase. The DNAs used were from phages T4, XP12, PBS1, SP82, and SP15, which contain as a major base either glucosylated 5-hydroxymethylcytosine, 5-methylcytosine, uracil, 5-hydroxymethyluracil, or phosphoglucuronated, glucosylated 5-(4′,5′-dihydroxypentyl)uracil, respectively. The relative ability of cohesive-ended TaqI fragments of these DNAs and of normal, λ DNA to be ligated was as follows: λ DNA = XP12 DNA >SP82 DNA ? nonglucosylatedT4 DNA >T4 DNA = PBS1 DNA ? SP15 DNA. TaqI-T4 DNA fragments were also inefficiently ligated by Escherichia coli DNA ligase. However, annealing-independent ligation of DNAase I-nicked T4, PBS1, and λ DNAs was equally efficient. We conclude that the poor ligation of TaqI fragments of T4 and PBS1 DNAs was due to the hydroxymethylation (and glucosylation) of cytosine residues at T4's cohesive ends and the substitution of uracil residues for thymine residues adjacent to PBS1's cohesive ends destabilizing the annealing of the restriction fragments. Only SP15 DNA with its negatively charged, modified base was unable to serve as a substrate for T4 DNA ligase in an annealing-independent reaction; therefore, its modification directly interfered with enzyme binding or catalysis.  相似文献   
997.
During early oogenesis in amphibia, most of the 5 S RNA and tRNA is stored in a ribonucleoprotein particle that sediments at 42 S. In Xenopus laevis the 42 S particle contains two major proteins: of Mr 48 000 (P48) and 43 000 (P43). It is shown that heterogeneity in composition of the 42 S particle reflects a changing situation whereby initially, both 5 S RNA and tRNA are complexed with P48 (1 molecule 5 S RNA: 1 molecule P48; 2 or 3 molecules tRNA: 1 molecule P48), but later, tRNA becomes increasingly associated with P43 (in a 1:1 ratio) although 5 S RNA remains complexed with a cleavage product of P48. These changes relate to the eventual utilization of the excess 5 S RNA and tRNA in ribosome assembly and protein synthesis.  相似文献   
998.
We extracted glycolipids from adult bovine nasal cartilage and purified some glycolipids by DEAE-Sephadex A-25 and Iatrobeads column chromatography. Cartilage contained 20 nmol of lipid bound sialic acid per gram wet tissue. The relative content of mono, di, tri, and tetrasialo gangliosides were 14%, 40%, 28% and 18%, respectively, as sialic acid content. We characterized some by examining carbohydrate composition, methylation analysis, sialidase treatment and mild acid hydrolysis. The ganglio-N-tetraose series, including GDla, GDlb, GTla, GTlb and GQlb, was identified as one of the major ganglioside groups of this cartilage.  相似文献   
999.
A specific antiserum against met5-enkepha-lin-arg6-phe7 was raised and used to study the distribution and characterization of met5-enkephalin-arg6-phe7-like immunoreactive material in rat brains by radioimmunoassay and immunohistochemical procedures. The antiserum appears to be directed to the COOH-terminus of the peptide, as it fails to cross-react with met5-enkeph-alin, met3-enkephalin-arg6, met5-enkephalin-arg6-arg7, met6-enkephalin-lys6, and leu-enkephalin. However, it cross-reacts with phe-met-arg-phe by about 10% and with phe-met-arg-phe-NH2 to an insignificant degree. The highest content of met5-enkephalin-arg6-phe7 was found in the striatum, which contains a dense network of immunoreactive varicose fibers and terminals, as well as immunoreac tive cell bodies. The met5-enkephalin-arg6-phe7 in striatum can be released in a Ca2+-dependent manner by a depolarizing concentration of KC1, raising the possibility of a neu-roregulatory role for met5-enkephalin-arg6-phe7. Characterization of the immunoreactive material by gel filtration and high pressure liquid chromatography revealed the presence of multiple forms of immunoreactive material in some brain regions.  相似文献   
1000.
Apple trees ( Malus pumila Mill . var. domestica Fuji/ Malus prunifolia rootstock) showed a high susceptibility to bitter pit when supplyed with ammonium salt instead of nitrate (control) in the nutrient solution. When apple fruit was affected by bitter pit, a lower calcium as well as a higher nitrogen and ammonium-nitrogen contents was observed in the fruit flesh near the calyx end. The activity of the mitochondrial Ca2+-uptake of the fruit flesh near the calyx end was higher when the tree was grown with ammonium salt than when grown with nitrate. Both the activities of succinate: cytochrome c oxidoreductase and the mitochondrial Ca2+-uptake per g of tissue were higher in affected fruit than in healthy fruit. Each of chlorpromazine, N-(6-aminohexyl)-5-chloro-l-napthalenesulfonamide (W-7) and N-(6-aminohexyl)-l-naphthalenesulfonamide (W-5), calmodulin antagonists, was infiltrated into the fruit for 20 min under reduced pressure (about 1 × 104 Pa). Few days later, numerous bitter pit-like spots were observed in both fruit treated with W-7 and chlorpromazine, while only a few spots were observed after the infiltration with W-5, a less potent calmodulin antagonist. A possible mechanism for the occurrence of bitter pit is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号