首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3383篇
  免费   444篇
  国内免费   204篇
  2024年   5篇
  2023年   80篇
  2022年   53篇
  2021年   90篇
  2020年   139篇
  2019年   175篇
  2018年   132篇
  2017年   178篇
  2016年   188篇
  2015年   148篇
  2014年   169篇
  2013年   200篇
  2012年   150篇
  2011年   137篇
  2010年   138篇
  2009年   187篇
  2008年   207篇
  2007年   217篇
  2006年   204篇
  2005年   213篇
  2004年   149篇
  2003年   144篇
  2002年   113篇
  2001年   104篇
  2000年   103篇
  1999年   61篇
  1998年   68篇
  1997年   38篇
  1996年   44篇
  1995年   26篇
  1994年   26篇
  1993年   21篇
  1992年   9篇
  1991年   14篇
  1990年   14篇
  1989年   18篇
  1988年   10篇
  1987年   11篇
  1986年   7篇
  1985年   5篇
  1984年   6篇
  1983年   6篇
  1982年   5篇
  1981年   3篇
  1980年   2篇
  1979年   5篇
  1978年   4篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
排序方式: 共有4031条查询结果,搜索用时 15 毫秒
101.
The Neotropical leaf litter frog genus Pristimantis is very species-rich, with 526 species described to date, but the full extent of its diversity is much higher and remains unknown. This study explores the phylogenetic processes and resulting evolutionary patterns of diversification in Pristimantis. Given the well-recognised failure of morphology- and community-based species groups to describe diversity within the genus, we apply a new test for the presence and phylogenetic distribution of higher evolutionary units. We developed a phylogeny based on 260 individuals encompassing 149 Pristimantis presumed species, sampled at mitochondrial and nuclear genes (3718 base pair alignment), combining new and available sequence data. Our phylogeny broadly agrees with previous studies, both in topology and age estimates, with the origin of Pristimantis at 28.97 (95% HDP =21.59 – 37.33) million years ago (MYA). New taxa that we add to the genus, which had not previously been included in Pristimantis phylogenies, suggest considerable diversity remains to be described. We assessed patterns of lineage origin and recovered 14 most likely (95% CI: 13–19) phylogenetic clusters or higher evolutionary significant units (hESUs) within Pristimantis. Diversification rates decrease towards the present following a density-dependent pattern for Pristimantis overall and for most hESU clusters, reflecting historical evolutionary radiation. The timing of diversification suggests that geological events in the Miocene, such as Andes orogenesis and Pebas system formation and drainage, may have had a direct or indirect impact on the evolution of Pristimantis and thus contributed to the origins of evolutionary independent phylogenetic clusters.  相似文献   
102.
103.
Global losses of seagrasses and mangroves, eutrophication‐driven increases in ephemeral algae, and macrophyte invasions have impacted estuarine detrital resources. To understand the implications of these changes on benthic ecosystem processes, we tested the hypotheses that detrital source richness, mix identity, and biomass influence benthic primary production, metabolism, and nutrient fluxes. On an estuarine muddy sandflat, we manipulated the availability of eight detrital sources, including mangrove, seagrass, and invasive and native algal species that have undergone substantial changes in distribution. Mixes of these detrital sources were randomly assigned to one of 12 treatments and dried detrital material was added to seventy‐two 0.25 m2 plots (= 6 plots). The treatments included combinations of either two or four detrital sources and high (60 g) or low (40 g) levels of enrichments. After 2 months, the dark, light, and net uptake of NH4+, dissolved inorganic nitrogen, and the dark efflux of dissolved organic nitrogen were each significantly influenced by the identity of detrital mixes, rather than detrital source richness or biomass. However, gross and net primary productivity, average oxygen flux, and net NOX and dissolved inorganic phosphorous fluxes were significantly greater in treatments with low than with high detrital source richness. These results demonstrate that changes in detrital source richness and mix identity may be important drivers of estuarine ecosystem performance. Continued impacts to estuarine macrophytes may, therefore, further alter detritus‐fueled productivity and processes in estuaries. Specific tests that address predicted future changes to detrital resources are required to determine the consequences of this significant environmental problem.  相似文献   
104.
105.
106.

Aim

Global conservation planning is often oriented around vertebrates and plants, yet most organisms are invertebrates. To explore the potential conservation implications of this bias, we assessed how well patterns of diversity for an influential group of invertebrates, the ants, correspond with those of three vertebrate groups (birds, mammals and amphibians).

Location

Global.

Methods

We compiled data on the number of genera of ants and the three vertebrate groups for 370 political regions across the world. We then compared their correlations both for overall diversity and between subsets of genera likely to be of conservation concern. We also developed generalized additive models (GAM) to identify regions where vertebrates and ants diverged in their diversity patterns.

Results

While ant and vertebrate diversity do positively correlate, the correlations are substantially weaker for the ant lineages of the greatest conservation concern. Vertebrates also notably fail to predict ant diversity in specific geographic areas, including Australia and Southeast Asia, parts of Africa and Madagascar, and south‐western China. These failures may be genuine differences in diversity patterns, or they may indicate important gaps in our knowledge of ant and vertebrate diversity.

Main conclusions

We conclude that it is currently unwise to assume that global conservation priorities based on vertebrates will conserve ants as well. We suspect that this also applies to other invertebrates.
  相似文献   
107.
108.
109.
110.
Heavy metal pollution has likely played an important role in global biodiversity decline, but there remains a paucity of information concerning the effects of metals on amphibian diversity. This study assessed anuran species richness and distribution in relation to sediment metal content and water chemistry in wetlands located along the Merri Creek corridor in Victoria, south‐eastern Australia. Anurans were present in 60% (21/35) of study sites, with a total of six species detected: the eastern common froglet (Crinia signifera), the eastern sign‐bearing froglet (Crinia parinsignifera), the southern brown tree frog (Litoria ewingii), the growling grass frog (Litoria raniformis), the eastern banjo frog (Limnodynastes dumerilii) and the spotted marsh frog (Limnodynastes tasmaniensis). Mean species richness was 1.77 ± 0.32 per site, and species richness ranged from zero to six species per site. Across sites, species richness correlated negatively with sediment concentrations of six heavy metals: copper, nickel, lead, zinc, cadmium and mercury. Species richness also correlated negatively with wetland water electrical conductivity (a proxy for salinity) and concentrations of orthophosphate. Distributions of the three most commonly observed frog species (C. signifera, L. tasmaniensis and L. ewingii) were significantly negatively associated with the total level of metal contamination at individual sites. The study is the first to provide evidence for an association between metal contamination and anuran species richness and distribution in the southern hemisphere, adding to a small but growing body of evidence that heavy metal pollution has contributed to global amphibian decline.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号