首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   611篇
  免费   31篇
  国内免费   41篇
  2023年   14篇
  2022年   22篇
  2021年   18篇
  2020年   18篇
  2019年   12篇
  2018年   18篇
  2017年   17篇
  2016年   18篇
  2015年   8篇
  2014年   15篇
  2013年   69篇
  2012年   10篇
  2011年   19篇
  2010年   17篇
  2009年   26篇
  2008年   40篇
  2007年   30篇
  2006年   34篇
  2005年   19篇
  2004年   12篇
  2003年   17篇
  2002年   13篇
  2001年   15篇
  2000年   13篇
  1999年   16篇
  1998年   12篇
  1997年   16篇
  1996年   13篇
  1995年   8篇
  1994年   14篇
  1993年   14篇
  1992年   14篇
  1991年   7篇
  1990年   9篇
  1989年   12篇
  1988年   9篇
  1987年   10篇
  1986年   9篇
  1985年   5篇
  1984年   4篇
  1982年   3篇
  1981年   6篇
  1980年   3篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1974年   2篇
排序方式: 共有683条查询结果,搜索用时 328 毫秒
591.
Abstract. This study analyses the pollen signature of tropical lowland forests (< 1000 m a.s.l.) in the Asian monsoon climate. Its aim is to investigate how well the pollen data can reproduce the vegetation patterns in tropical India, and how the variations in the pollen composition are related to the gradient of decreasing plant moisture availability (measured by the ratio of actual over equilibrium evapotranspiration) that is associated with the strong seasonality of precipitation that characterizes the monsoon climate regime. We used canonical correspondence analysis (CCA) to relate the variations in the pollen composition of 71 surface soil samples from evergreen and semi‐evergreen forests distributed along the western coast of south India (8° 48’ N‐15° 08’ N), with the climate characteristics of the sampling sites. We show that variations in plant moisture availability strongly determine variations in the pollen composition; for example evergreen and semi‐evergreen forests can be distinguished on the basis of their pollen assemblages. Variations in the mean temperature of the coldest month associated with elevation also determine distinct pollen assemblages; for example evergreen forests above 800 m a.s.l. present different pollen signatures than those below this altitude/temperature limit. Variations in the relative abundance of some pollen taxa are strongly related to plant moisture availability and taxa indicators of climate can be identified. Hence, modern pollen assemblages from tropical forests in south India carry considerable information about vegetation patterns and climate. Paleoclimatic changes, notably in the monsoon season, could be quantified.  相似文献   
592.
All methods used in historical biogeographical analysis aim to obtain resolved area cladograms that represent historical relationships among areas in which monophyletic groups of taxa are distributed. When neither widespread nor sympatric taxa are present in the distribution of a monophyletic group, all methods obtain the same resolved area cladogram that conforms to a simple vicariance scenario. In most cases, however, the distribution of monophyletic groups of taxa is not that simple. A priori and a posteriori methods of historical biogeography differ in the way in which they deal with widespread and sympatric taxa. A posteriori methods are empirically superior to a priori methods, as they provide a more parsimonious accounting of the input data, do not eliminate or modify input data, and do not suffer from internal inconsistencies in implementation. When factual errors are corrected, the exemplar presented by M.C. Ebach & C.J. Humphries (Journal of Biogeography, 2002, 29 , 427) purporting to show inconsistencies in implementation by a posteriori methods actually corroborates the opposite. The rationale for preferring a priori methods thus corresponds to ontological rather than to epistemological considerations. We herein identify two different research programmes, cladistic biogeography (associated with a priori methods) and phylogenetic biogeography (associated with a posteriori methods). The aim of cladistic biogeography is to fit all elements of all taxon–area cladograms to a single set of area relationships, maintaining historical singularity of areas. The aim of phylogenetic biogeography is to document, most parsimoniously, the geographical context of speciation events. The recent contribution by M.C. Ebach & C.J. Humphries (Journal of Biogeography, 2002, 29 , 427) makes it clear that cladistic biogeography using a priori methods is an inductivist/verificationist research programme, whereas phylogenetic biogeography is hypothetico‐deductivist/falsificationist. Cladistic biogeography can become hypothetic‐deductive by using a posteriori methods of analysis.  相似文献   
593.
594.
1. The geographical distribution of planktonic rotifer species was investigated in 31 lakes in the North Island of New Zealand.
2. A total of 78 species was recorded. Species richness, previously thought to be low in New Zealand, was found to be comparable with that of northern temperate lakes with an average of 21.1 species found per lake. The large, deep oligotrophic Lake Taupo had the lowest richness, and the artificial reservoirs the highest.
3. The distribution of species, investigated using multivariate techniques [Cluster analysis, canonical correspondence analysis (CCA)], was most strongly associated with trophic state gradients. For example, Conochilus unicornis, C. dossuarius and Ascomorpha ovalis were associated with more oligotrophic conditions, and Brachionus budapestinensis, B. calyciflorus and Keratella tropica with more eutrophic conditions. Inorganic turbidity was also of importance in determining rotifer distributions in some shallower lakes.
4. Some species, for example K. australis and C. exiguus , appear to be limited in distribution by poor dispersal abilities.  相似文献   
595.
Elucidating the mechanisms underlying microbial succession is a major goal of microbial ecology research. Given the increasing human pressure on the environment and natural resources, responses to the repeated introduction of organic and inorganic pollutants are of particular interest. To investigate the temporal dynamics of microbial communities in response to pollutants, we analysed the microbial community structure in batch microcosms that were inoculated with soil bacteria following exposure to individual or combined pollutants (phenanthrene, n‐octadecane, phenanthrene + n‐octadecane and phenanthrene + n‐octadecane + CdCl2). Subculturing was performed at 10‐day intervals, followed by high‐throughput sequencing of 16S rRNA genes. The dynamics of microbial communities in response to different pollutants alone and in combination displayed similar patterns during enrichment. Specifically, the repression and induction of microbial taxa were dominant, and the fluctuation was not significant. The rate of appearance for new taxa and the temporal turnover within microbial communities were higher than the rates reported in other studies of microbial communities in air, water and soil samples. In addition, conditionally rare taxa that were specific to the treatments exhibited higher betweenness centrality values in the co‐occurrence network, indicating a strong influence on other interactions in the community. These results suggest that the repeated introduction of pollutants could accelerate microbial succession in microcosms, resulting in the rapid re‐equilibration of microbial communities.  相似文献   
596.
597.
The Red List Categories and the accompanying five criteria developed by the International Union for Conservation of Nature (IUCN) provide an authoritative and comprehensive methodology to assess the conservation status of organisms. Red List criterion B, which principally uses distribution data, is the most widely used to assess conservation status, particularly of plant species. No software package has previously been available to perform large‐scale multispecies calculations of the three main criterion B parameters [extent of occurrence (EOO), area of occupancy (AOO) and an estimate of the number of locations] and provide preliminary conservation assessments using an automated batch process. We developed ConR, a dedicated R package, as a rapid and efficient tool to conduct large numbers of preliminary assessments, thereby facilitating complete Red List assessment. ConR (1) calculates key geographic range parameters (AOO and EOO) and estimates the number of locations sensu IUCN needed for an assessment under criterion B; (2) uses this information in a batch process to generate preliminary assessments of multiple species; (3) summarize the parameters and preliminary assessments in a spreadsheet; and (4) provides a visualization of the results by generating maps suitable for the submission of full assessments to the IUCN Red List. ConR can be used for any living organism for which reliable georeferenced distribution data are available. As distributional data for taxa become increasingly available via large open access datasets, ConR provides a novel, timely tool to guide and accelerate the work of the conservation and taxonomic communities by enabling practitioners to conduct preliminary assessments simultaneously for hundreds or even thousands of species in an efficient and time‐saving way.  相似文献   
598.
Climate change can influence soil microorganisms directly by altering their growth and activity but also indirectly via effects on the vegetation, which modifies the availability of resources. Direct impacts of climate change on soil microorganisms can occur rapidly, whereas indirect effects mediated by shifts in plant community composition are not immediately apparent and likely to increase over time. We used molecular fingerprinting of bacterial and fungal communities in the soil to investigate the effects of 17 years of temperature and rainfall manipulations in a species‐rich grassland near Buxton, UK. We compared shifts in microbial community structure to changes in plant species composition and key plant traits across 78 microsites within plots subjected to winter heating, rainfall supplementation, or summer drought. We observed marked shifts in soil fungal and bacterial community structure in response to chronic summer drought. Importantly, although dominant microbial taxa were largely unaffected by drought, there were substantial changes in the abundances of subordinate fungal and bacterial taxa. In contrast to short‐term studies that report high resistance of soil fungi to drought, we observed substantial losses of fungal taxa in the summer drought treatments. There was moderate concordance between soil microbial communities and plant species composition within microsites. Vector fitting of community‐weighted mean plant traits to ordinations of soil bacterial and fungal communities showed that shifts in soil microbial community structure were related to plant traits representing the quality of resources available to soil microorganisms: the construction cost of leaf material, foliar carbon‐to‐nitrogen ratios, and leaf dry matter content. Thus, our study provides evidence that climate change could affect soil microbial communities indirectly via changes in plant inputs and highlights the importance of considering long‐term climate change effects, especially in nutrient‐poor systems with slow‐growing vegetation.  相似文献   
599.
腺齿木科系统位置评述   总被引:5,自引:0,他引:5  
索志立 《植物研究》2005,25(1):26-29
腺齿木科(Trimeniaceae)含2属5种。形态学研究显示腺齿木科具有许多原始性状。最新的分子系统发育研究显示,腺齿木科是现存被子植物的重要基部类群之一。但有关腺齿木科的系统位置存在争议。被子植物(有花植物)的起源与辐射一直是植物系统学家关注的热点。对该科系统位置的研究历史与现状进行评述。  相似文献   
600.
Including or excluding rare taxa in bioassessment is a controversial topic, which essentially affects the reliability and accuracy of the result. In the present paper, we hypothesize that biological indices such as Shannon–Wiener index, Simpson's index, Margalef index, evenness, BMWP (biological monitoring working party), and ASPT (Average Score Per Taxon) respond differently to rare taxa exclusion. To test this hypothesis, a benthic macroinvertebrate data set based on recent fifteen‐year studies in China was built for suppositional plot analyses. A field research was conducted in the Nansi Lake to perform related analyses. The results of suppositional plot simulations showed that Simpson's index placed more weight on common taxa than any other studied indices, followed by Shannon–Wiener index which remained a high value with the exclusion of rare taxa. The results indicated that there was not much of effect on Simpson's index and Shannon–Wiener index when rare taxa were excluded. Rare taxa played an important role in Margalef index and BMWP than in other indices. Evenness showed an increase trend, while ASPT varied inconsistently with the exclusion of rare taxa. Results of the field study also indicated that rare taxa had few impacts on the Shannon–Wiener index. By examining the relationships between the rare taxa and biological indices in our study, it is suggested that including the rare taxa when using BMWP and excluding them in the proposed way (e.g., fixed‐count subsampling) to calculate Shannon–Wiener index and Simpson's index could raise the efficiency and reduce the biases in the bioassessment of freshwater ecosystems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号