首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   737篇
  免费   86篇
  国内免费   72篇
  895篇
  2024年   6篇
  2023年   40篇
  2022年   45篇
  2021年   63篇
  2020年   72篇
  2019年   63篇
  2018年   65篇
  2017年   36篇
  2016年   52篇
  2015年   40篇
  2014年   64篇
  2013年   90篇
  2012年   40篇
  2011年   36篇
  2010年   18篇
  2009年   19篇
  2008年   17篇
  2007年   24篇
  2006年   22篇
  2005年   17篇
  2004年   16篇
  2003年   11篇
  2002年   7篇
  2001年   4篇
  2000年   2篇
  1999年   6篇
  1998年   5篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
  1950年   1篇
排序方式: 共有895条查询结果,搜索用时 15 毫秒
61.
Aptamers are single-stranded structured oligonucleotides (DNA or RNA) that can bind to a wide range of targets (“apatopes”) with high affinity and specificity. These nucleic acid ligands, generated from pools of random-sequence by an in vitro selection process referred to as systematic evolution of ligands by exponential enrichment (SELEX), have now been identified as excellent tools for chemical biology, therapeutic delivery, diagnosis, research, and monitoring therapy in real-time imaging. Today, aptamers represent an interesting class of modern pharmaceuticals which with their low immunogenic potential mimic extend many of the properties of monoclonal antibodies in diagnostics, research, and therapeutics. More recently, chimeric aptamer approach employing many different possible types of chimerization strategies has generated more stable and efficient chimeric aptamers with aptamer–aptamer, aptamer–nonaptamer biomacromolecules (siRNAs, proteins) and aptamer–nanoparticle chimeras. These chimeric aptamers when conjugated with various biomacromolecules like locked nucleic acid (LNA) to potentiate their stability, biodistribution, and targeting efficiency, have facilitated the accurate targeting in preclinical trials. We developed LNA-aptamer (anti-nucleolin and EpCAM) complexes which were loaded in iron-saturated bovine lactofeerin (Fe-blf)-coated dopamine modified surface of superparamagnetic iron oxide (Fe3O4) nanoparticles (SPIONs). This complex was used to deliver the specific aptamers in tumor cells in a co-culture model of normal and cancer cells. This review focuses on the chimeric aptamers, currently in development that are likely to find future practical applications in concert with other therapeutic molecules and modalities.  相似文献   
62.
Evaluation of: Wulfkuhle JD, Berg D, Wolff C et al. Molecular analysis of HER2 signaling in human breast cancer by functional protein pathway activation mapping. Clin. Cancer Res. 18(23), 6426–6435 (2012).

Exhaustive characterization and mapping of pivotal molecules and downstream effectors deregulated in breast cancer is of fundamental clinical value to define the most effective therapy. Wulfkuhle et al. applied reverse-phase protein microarray, a highly sensitive immunoassay able to perform quantitative and multiplexed analysis of total and/or modified cellular proteins, to assess protein levels and activation/phosphorylation status of the HER family (EGFR, HER2, HER3) and downstream signaling molecules in HER2+ and HER2- breast cancers. The research was performed using laser capture microdissected tumor epithelial cells from frozen samples and formalin-fixed paraffin embedded specimens, which were also analyzed by immunohistochemistry (IHC) and FISH. This study identified a subgroup of IHC/FISH/HER2- patients with HER2 activation/phosphorylation levels comparable with those obtained from IHC/FISH/HER2+ tumors. HER2 signaling activation was independent from total HER2 expression and involved HER3 and EGFR activation. These findings indicate that molecular characterization by reverse-phase protein microarray of HER2 and its partners/effectors in the signaling cascade enables the identification of a subgroup of IHC/FISH/HER2- patients showing HER2 signaling activation. These patients, currently excluded from targeted therapy administration, could potentially benefit from this and it could improve prognosis and survival.  相似文献   
63.
脂肪酸代谢紊乱容易导致癌症的发生。长链脂酰辅酶A合成酶家族(long chain acyl-coenzyme A synthetase family,ACSLs)负责激活长链脂肪酸,在脂肪酸代谢中发挥重要作用。但在癌细胞中,其调控作用经常被解除,细胞内脂肪酸的分布、种类和数量发生改变,进而导致癌症和其他代谢性疾病的发生。ACSLs 在哺乳动物中包括5种亚型,分别为ACSL1、3、4、5和6。ACSL1在甘油三脂的合成和分配中发挥重要作用;ACSL3有助于脂滴的形成,脂滴对维持脂质稳态具有重要作用;ACSL4的表达与类固醇激素相关,在铁死亡途径中发挥重要作用;ACSL5可以催化外源性脂肪酸的代谢,但不能催化从头合成脂肪酸的代谢;ACSL6在脑内的脂肪酸代谢及生殖器官中精子发生和卵巢功能维持等方面发挥重要作用。ACSLs的调控因子包括转录因子、共激活因子、激素受体、蛋白激酶和小的非编码RNA等。它们通过介导脂肪酸代谢,广泛参与线粒体介导的能量代谢,内质网应激和肿瘤炎性微环境等。此外,ACSLs还作为独立预后因素,成为各种癌症临床诊断和治疗的生物标志物和治疗靶点。近年来,越来越多的研究表明,ACSL家族在癌症的发生发展进程中发挥重要作用。本文从ACSL基因家族,ACSLs与恶性肿瘤及基于ACSLs脂代谢的肿瘤治疗方面进行阐述,为后续ACSL基因家族的研究及肿瘤的靶向治疗提供理论依据和候选分子靶标。  相似文献   
64.
Researchers in observational survival analysis are interested in not only estimating survival curve nonparametrically but also having statistical inference for the parameter. We consider right-censored failure time data where we observe n independent and identically distributed observations of a vector random variable consisting of baseline covariates, a binary treatment at baseline, a survival time subject to right censoring, and the censoring indicator. We assume the baseline covariates are allowed to affect the treatment and censoring so that an estimator that ignores covariate information would be inconsistent. The goal is to use these data to estimate the counterfactual average survival curve of the population if all subjects are assigned the same treatment at baseline. Existing observational survival analysis methods do not result in monotone survival curve estimators, which is undesirable and may lose efficiency by not constraining the shape of the estimator using the prior knowledge of the estimand. In this paper, we present a one-step Targeted Maximum Likelihood Estimator (TMLE) for estimating the counterfactual average survival curve. We show that this new TMLE can be executed via recursion in small local updates. We demonstrate the finite sample performance of this one-step TMLE in simulations and an application to a monoclonal gammopathy data.  相似文献   
65.
肺癌的表皮生长因子受体分子靶向治疗与基因突变   总被引:1,自引:0,他引:1  
肺癌分子靶向治疗近年来取得较大进展,特别是针对表皮生长因子受体(EGFR)分子靶向药物表现出确定的临床效果。临床应用表明,EGFR基因酪氨酸激酶域体细胞突变与非小细胞肺癌患者对酪氨酸激酶抑制剂吉非替尼的敏感性相关,本文就相关的研究进行了简述。  相似文献   
66.
Laborious sample pretreatment of biological samples represents the most limiting factor for the translation of targeted proteomics assays from research to clinical routine. An optimized method for the simultaneous quantitation of 12 major apolipoproteins (apos) combining on‐line SPE and fast LC‐MS/MS analysis in 6.5 min total run time was developed, reducing the manual sample pretreatment time of 3 μL serum or plasma by 60%. Within‐run and between‐day imprecisions below 10 and 15% (n = 10) and high recovery rates (94–131%) were obtained applying the high‐throughput setup. High‐quality porcine trypsin was used, which outperformed cost‐effective bovine trypsin regarding digestion efficiency. Comparisons with immunoassays and another LC‐MS/MS assay demonstrated good correlation (Pearson's R: 0.81–0.98). Further, requirements on sample quality concerning sampling, processing, and long‐term storage up to 1 year were investigated revealing significant influences of the applied sampling material and coagulant on quantitation results. Apo profiles of 1339 subjects of the LIFE‐Adult‐Study were associated with lifestyle and physiological parameters as well as establish parameters of lipid metabolism (e.g., triglycerides, cholesterol). Besides gender effects, most significant impact was seen regarding lipid‐lowering medication. In conclusion, this novel highly standardized, high‐throughput targeted proteomics assay utilizes a fast, simultaneous analysis of 12 apos from least sample amounts.  相似文献   
67.
The post‐translational modification of DNA repair and checkpoint proteins by ubiquitin and small ubiquitin‐like modifier (SUMO) critically orchestrates the DNA damage response (DDR). The ubiquitin ligase RNF4 integrates signaling by SUMO and ubiquitin, through its selective recognition and ubiquitination of SUMO‐modified proteins. Here, we define a key new determinant for target discrimination by RNF4, in addition to interaction with SUMO. We identify a nucleosome‐targeting motif within the RNF4 RING domain that can bind DNA and thereby enables RNF4 to selectively ubiquitinate nucleosomal histones. Furthermore, RNF4 nucleosome‐targeting is crucially required for the repair of TRF2‐depleted dysfunctional telomeres by 53BP1‐mediated non‐homologous end joining.  相似文献   
68.
69.
70.
In this study, the chemical features of dendritic mesoporous silica nanoparticles (DMSNs) provided the opportunity to design a nanostructure with the capability to intelligently transport the payload to the tumor cells. In this regard, doxorubicin (DOX)-encapsulated DMSNs was electrostatically surface-coated with polycarboxylic acid dextran (PCAD) to provide biocompatible dextran-capped DMSNs (PCAD-DMSN@DOX) with controlled pH-dependent drug release. Moreover, a RNA aptamer against a cancer stem cell (CSC) marker, CD133 was covalently attached to the carboxyl groups of DEX to produce a CD133-PCAD-DMSN@DOX. Then, the fabricated nanosystem was utilized to efficiently deliver DOX to CD133+ colorectal cancer cells (HT29). The in vitro evaluation in terms of cellular uptake and cytotoxicity demonstrated that the CD133-PCAD-DMSN@DOX specifically targets HT29 as a CD133 overexpressed cancer cells confirmed by flow cytometry and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay. The potentially promising intelligent-targeted platform suggests that targeted dextran-capped DMSNs may find impressive application in cancer therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号