首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3538篇
  免费   332篇
  国内免费   307篇
  2024年   8篇
  2023年   55篇
  2022年   77篇
  2021年   102篇
  2020年   112篇
  2019年   106篇
  2018年   92篇
  2017年   78篇
  2016年   130篇
  2015年   139篇
  2014年   160篇
  2013年   268篇
  2012年   108篇
  2011年   127篇
  2010年   86篇
  2009年   145篇
  2008年   170篇
  2007年   186篇
  2006年   177篇
  2005年   197篇
  2004年   210篇
  2003年   153篇
  2002年   170篇
  2001年   103篇
  2000年   112篇
  1999年   103篇
  1998年   128篇
  1997年   80篇
  1996年   68篇
  1995年   71篇
  1994年   92篇
  1993年   72篇
  1992年   51篇
  1991年   43篇
  1990年   33篇
  1989年   29篇
  1988年   26篇
  1987年   37篇
  1986年   21篇
  1985年   22篇
  1984年   6篇
  1983年   8篇
  1982年   5篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   3篇
  1976年   1篇
  1950年   1篇
排序方式: 共有4177条查询结果,搜索用时 15 毫秒
61.
Three to four families of nuclear genes encode different isoforms of phosphoenolpyruvate (PEP) carboxylase (PEPC): C4-specific, C3 or etiolated, CAM and root forms. C4 leaf PEPC is encoded by a single gene (ppc) in sorghum and maize, but multiple genes in the C4-dicot Flaveria trinervia. Selective expression of ppc in only C4-mesophyll cells is proposed to be due to nuclear factors, DNA methylation and a distinct gene promoter. Deduced amino acid sequences of C4-PEPC pinpoint the phosphorylatable serine near the N-terminus, C4-specific valine and serine residues near the C-terminus, conserved cysteine, lysine and histidine residues and PEP binding/catalytic sites. During the PEPC reaction, PEP and bicarbonate are first converted into carboxyphosphate and the enolate of pyruvate. Carboxyphosphate decomposes within the active site into Pi and CO2, the latter combining with the enolate to form oxalacetate. Besides carboxylation, PEPC catalyzes a HCO3 --dependent hydrolysis of PEP to yield pyruvate and Pi. Post-translational regulation of PEPC occurs by a phosphorylation/dephosphorylation cascade in vivo and by reversible enzyme oligomerization in vitro. The interrelation between phosphorylation and oligomerization of the enzyme is not clear. PEPC-protein kinase (PEPC-PK), the enzyme responsible for phosphorylation of PEPC, has been studied extensively while only limited information is available on the protein phosphatase 2A capable of dephosphorylating PEPC. The C4 ppc was cloned and expressed in Escherichia coli as well as tobacco. The transformed E. coli produced a functional/phosphorylatable C4 PEPC and the transgenic tobacco plants expressed both C3 and C4 isoforms. Site-directed mutagenesis of ppc indicates the importance of His138, His579 and Arg587 in catalysis and/or substrate-binding by the E. coli enzyme, Ser8 in the regulation of sorghum PEPC. Important areas for further research on C4 PEPC are: mechanism of transduction of light signal during photoactivation of PEPC-PK and PEPC in leaves, extensive use of site-directed mutagenesis to precisely identify other key amino acid residues, changes in quarternary structure of PEPC in vivo, a high-resolution crystal structure, and hormonal regulation of PEPC expression.Abbreviations OAA oxalacetate - PEP phosphoenolpyruvate - PEPC PEP carboxylase - PEPC-PK PEPC-protein kinase - PPDK pyruvate, orthophosphate dikinase - Rubisco ribulose 1,5-bis-phosphate carboxylase/oxygenase - CAM Crassulacean acid metabolism  相似文献   
62.
Tn163 is a transposable element identified in Rhizobium leguminosarum bv. viciae by its high insertion rate into positive selection vectors. The 4.6 kb element was found in only one further R. leguminosarum bv. viciae strain out of 70 strains investigated. Both unrelated R. leguminosarum bv. viciae strains contained one copy of the transposable element, which was localized in plasmids native to these strains. DNA sequence analysis revealed three large open reading frames (ORFs) and 38 bp terminal inverted repeats. ORF1 encodes a putative protein of 990 amino acids displaying strong homologies to transposases of class 11 transposons. ORF2, transcribed in the opposite direction, codes for a protein of 213 amino acids which is highly homologous to DNA invertases and resolvases of class II transposons. Homology of ORF1 and ORF2 and the genetic structure of the element indicate that Tn163 can be classified as a class II transposon. It is the first example of a native transposon in the genus Rhizobium. ORF3, which was found not to be involved in the transposition process, encodes a putative protein (256 amino acids) of unknown function. During transposition Tn163 produced direct repeats of 5 bp, which is typical for transposons of the Tn3 family. However, one out of the ten insertion sites sequenced showed a 6 by duplication of the target DNA; all duplicated sequences were A/T rich. Insertion of Tn163 into the sacB gene revealed two hot spots. Chromosomes of different R. leguminosarum bv. viciae strains were found to be highly refractory to the insertion of Tn163.  相似文献   
63.
λ-Escherichia coli complexes exhibited remarkable sensitivity to the treatment with test steroidal derivatives in the presence of Cu(II). The decline in plaque-forming units after steroid treatment was more pronounced in complexes with some of the irradiation repair-defective mutants of E. coli K-12, i.e., recA, lexA and polA, as compared to uvrA and wild-type strains. The red gene of λ phage and recA gene of E. coli seem to have a complementary effect on the steroid-induced lesions. An enhanced level of mutagenesis was observed when steroid-treated E. coli cells were transformed with steroid-treated pBR322 plasmid DNA. A remarkable degree of c mutation was also observed when steroid I-treated phage particles were allowed to adsorb on steroid-treated wild-type bacteria. Moreover, the oxathione steroid treatment of λcI857-E. coli lysogen resulted in prophage induction in nutrient broth even at 32°C. Thus on the basis of these results, the role of SOS repair system in steroid-induced mutagenesis and repair of DNA lesions in E. coli and bacteriophage λ has been suggested.  相似文献   
64.
A recombinant double mutant of hemoglobin (Hb), E6V/L88A(beta), was constructed to study the strength of the primary hydrophobic interaction in the gelation of sickle Hb, i.e., that between the mutant Val-6(beta) of one tetramer and the hydrophobic region between Phe-85(beta) and Leu-88(beta) on an adjacent tetramer. Thus, a construct encoding the donor Val-6(beta) of the expressed recombinant HbS and a second mutation encoding an Ala in place of Leu-88(beta) was assembled. The doubly mutated beta-globin gene was expressed in yeast together with the normal human alpha-chain, which is on the same plasmid, to produce a soluble Hb tetramer. Characterizations of the Hb double mutant by mass spectrometry, by HPLC, and by peptide mapping of tryptic digests of the mutant beta-chain were consistent with the desired mutations. The absorption spectra in the visible and the ultraviolet regions were practically superimposable for the recombinant Hb and the natural Hb purified from human red cells. Circular dichroism studies on the overall structure of the recombinant Hb double mutant and the recombinant single mutant, HbS, showed that both were correctly folded. Functional studies on the recombinant double mutant indicated that it was fully cooperative. However, its gelation concentration was significantly higher than that of either recombinant or natural sickle Hb, indicating that the strength of the interaction in this important donor-acceptor region in sickle Hb was considerably reduced even with such a conservative hydrophobic mutation.  相似文献   
65.
We report the construction of subunit interface mutants of rabbit muscle aldolase A with altered quaternary structure. A mutation has been described that causes nonspherocytic hemolytic anemia and produces a thermolabile aldolase (Kishi H et al., 1987, Proc Natl Acad Sci USA 84:8623-8627). The disease arises from substitution of Gly for Asp-128, a residue at the subunit interface of human aldolase A. To elucidate the role of this residue in the highly homologous rabbit aldolase A, site-directed mutagenesis is used to replace Asp-128 with Gly, Ala, Asn, Gln, or Val. Rabbit aldolase D128G purified from Escherichia coli is found to be similar to human D128G by kinetic analysis, CD, and thermal inactivation assays. All of the mutant rabbit aldolases are similar to the wild-type rabbit enzyme in secondary structure and kinetic properties. In contrast, whereas the wild-type enzyme is a tetramer, chemical crosslinking and gel filtration indicate that a new dimeric species exists for the mutants. In sedimentation velocity experiments, the mutant enzymes as mixtures of dimer and tetramer at 4 degrees C. Sedimentation at 20 degrees C shows that the mutant enzymes are > 99.5% dimeric and, in the presence of substrate, that the dimeric species is active. Differential scanning calorimetry demonstrates that Tm values of the mutant enzymes are decreased by 12 degrees C compared to wild-type enzyme. The results indicate that Asp-128 is important for interface stability and suggest that 1 role of the quaternary structure of aldolase is to provide thermostability.  相似文献   
66.
The pharmacophore of the human C5a anaphylatoxin.   总被引:3,自引:2,他引:1       下载免费PDF全文
We have determined which amino acids contribute to the pharmacophore of human C5a, a potent inflammatory mediator. A systematic mutational analysis of this 74-amino acid protein was performed and the effects on the potency of receptor binding and of C5a-induced intracellular calcium ion mobilization were measured. This analysis included the construction of hybrids between C5a and the homologous but unreactive C3a protein and site-directed mutagenesis. Ten noncontiguous amino acids from the structurally well-defined 4-helix core domain (amino acids 1-63) and the C-terminal arginine-containing tripeptide were found to contribute to the pharmacophore of human C5a. The 10 mostly charged amino acids from the core domain generally made small incremental contributions toward binding affinity, some of which were independent. Substitutions of the C-terminal amino acid Arg 74 produced the largest single effect. We also found the connection between these 2 important regions to be unconstrained.  相似文献   
67.
The Marek's disease virus (MDV) glycoprotein B (gB) precursor, gp100, is proteolytically cleaved into two disulfide-linked subunits, gp60 and gp49. In the gB homologs of most other herpesviruses, a tetrapeptide, Arg-Xaa-Arg-Arg, is immediately upstream from the predicted cleavage site. We have investigated the specificity of the proteolytic cleavage in gplOO by introducing mutations within its predicted cleavage site (Arg-Leu-Arg-Arg) and expressed these mutants in recombinant fowlpox virus (FPV). The results show that all three Arg residues at the predicted cleavage site play an important role in the specific proteolytic cleavage of gp100. Furthermore, we demonstrated that the cleavage of gplOO is not necessary for transport of gB to the cell surface.  相似文献   
68.
The gene encoding a Verotoxin 2 variant, VTvp1, was mutated by oligonucleotide-directed site-specific mutagenesis. Among 6 mutant toxins encoded by the mutated genes, E167Q-R170L (glutamic acid at position 167 and arginine at position 170 from N-terminus of the A subunit were replaced by glutamine and leucine, respectively) was found to have markedly decreased activities; inhibition of protein synthesis, Vero cell cytotoxicity and mouse lethality of the purified E167Q-R170L were 1/1,900, 1/125,000 and 1/2,000, respectively, of those of the purified wild-type VT2vp1. Since the antigenic property of the E167Q-R170L was demonstrated to be similar to that of the wild-type VT2vp1 by Ouchterlony double gel diffusion test and by neutralization test of Vero cell cytotoxicity of the VT2vp1, a possibility to use the mutant VT2vp1, E167Q-R170L, as a toxoid is discussed.  相似文献   
69.
A large ams gene cluster required for production of the acidic extracellular polysaccharide (EPS) amylovoran by the fire blight pathogen Erwinia amylovora was cloned. Tn5 mutagenesis and gene replacement were used to construct chromosomal ams mutants. Five complementation groups, essential for amylovoran synthesis and virulence in E. amylovora, were identified and designated amsA-E. The ams gene cluster is about 7 kb in size and functionally equivalent to the cps gene cluster involved in EPS synthesis by the related pathogen Erwinia stewartii. Mucoidy and virulence were restored to E. stewartii mutants in four cps complementation groups by the cloned E. amylovora ams genes. Conversely, the E. stewartii cps gene cluster was able to complement mutations in E. amylovora ams genes. Correspondence was found between the amsA-E complementation groups and the cpsB-D region, but the arrangement of the genes appears to be different. EPS production and virulence were also restored to E. amylovora amsE and E. stewartii cpsD mutants by clones containing the Rhizobium meliloti exoA gene.  相似文献   
70.
Summary Thirty-three insertions of transposon Tn10l6l7 into genes involved in the control of rod cell shape were isolated in Salmonella typhimurium by the characteristic glossy appearance of colonies composed of spherical cells. Genetic tests demonstrated that 25 (76%) were insertions in the rodA gene, 7 (21 %) were mre mutants, and 1 (3%) was a divD mutant. No insertion in the pbpA gene were found. Insertions in cell shape genes only appeared when strains displaying resistance to mecillinam (not caused by -lactamase production) were employed. Neither rodA nor mre insertions could be transduced to wild-type strains but they were normally accepted by mecillinam-resistant derivatives and by cya and crp mutants, which, unlike the corresponding Escherichia coli strains, did not display resistance to mecillinam. On the other hand, the divD insertion could be efficiently transduced to any strain. It is concluded that the rodA, mre, and divD genes are involved in the control of rod cell shape but, in addition, the RodA and Mre products perform some function(s) that is essential for wild-type cells but dispensable for some mecillinam-resistant strains, and for cya and crp mutants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号