首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   799篇
  免费   50篇
  国内免费   19篇
  2024年   3篇
  2023年   10篇
  2022年   13篇
  2021年   8篇
  2020年   31篇
  2019年   30篇
  2018年   25篇
  2017年   25篇
  2016年   29篇
  2015年   22篇
  2014年   42篇
  2013年   61篇
  2012年   39篇
  2011年   34篇
  2010年   30篇
  2009年   41篇
  2008年   48篇
  2007年   32篇
  2006年   37篇
  2005年   32篇
  2004年   33篇
  2003年   28篇
  2002年   24篇
  2001年   9篇
  2000年   13篇
  1999年   23篇
  1998年   12篇
  1997年   14篇
  1996年   17篇
  1995年   11篇
  1994年   9篇
  1993年   8篇
  1992年   14篇
  1991年   5篇
  1990年   5篇
  1989年   7篇
  1988年   2篇
  1987年   5篇
  1986年   2篇
  1985年   7篇
  1984年   5篇
  1983年   4篇
  1982年   1篇
  1981年   2篇
  1980年   4篇
  1979年   4篇
  1978年   1篇
  1976年   4篇
  1974年   2篇
  1970年   1篇
排序方式: 共有868条查询结果,搜索用时 15 毫秒
81.
The dynamic role of the prehensile tail of atelines during locomotion is poorly understood. While some have viewed the tail of Ateles simply as a safety mechanism, others have suggested that the prehensile tail plays an active role by adjusting pendulum length or controlling lateral sway during bimanual suspensory locomotion. This study examines the bony and muscular anatomy of the prehensile tail as well as the kinematics of tail use during tail-assisted brachiation in two primates, Ateles and Lagothrix. These two platyrrhines differ in anatomy and in the frequency and kinematics of suspensory locomotion. Lagothrix is stockier, has shorter forelimbs, and spends more time traveling quadrupedally and less time using bimanual suspensory locomotion than does Ateles. In addition, previous studies showed that Ateles exhibits greater hyperextension of the tail, uses its tail to grip only on alternate handholds, and has a larger abductor caudae medialis muscle compared to Lagothrix. In order to investigate the relationship between anatomy and behavior concerning the prehensile tail, osteological data and kinematic data were collected for Ateles fusciceps and Lagothrix lagothricha. The results demonstrate that Ateles has more numerous and smaller caudal elements, particularly in the proximal tail region. In addition, transverse processes are relatively wider, and sacro-caudal articulation is more acute in Ateles compared to Lagothrix. These differences reflect the larger abductor muscle mass and greater hyperextension in Ateles. In addition, Ateles shows fewer side-to-side movements during tail-assisted brachiation than does Lagothrix. These data support the notion that the prehensile tail represents a critical dynamic element in the tail-assisted brachiation of Ateles, and may be useful in developing inferences concerning behavior in fossil primates.  相似文献   
82.
BACKGROUND: As previously shown, Paraquat (PQ) treatments of Xenopus developing embryos mainly induce a characteristic developmental alteration we named "abnormal tail flexure." PQ oxidative activity has been indicated as the cause of this malformation. Since PQ evokes reactive oxygen species (ROS), among which hydroxyl radicals (OH(*)), and H(2)O(2) can be converted to (OH(*)) via Fenton reaction, we compared here the lethal and teratogenic potentials of both oxidants by using the Frog Embryo Teratogenesis Assay-Xenopus (FETAX), in order to grasp eventual similarities in their teratogenic activity. METHODS: Xenopus embryos were exposed, from stage 8 to stage 47, at 368, 491, 612, and 735 microM H(2)O(2) and 0.388 microM PQ. The probit analysis of H(2)O(2) mortality and malformed larva percents gave a 598.82 microM Lethal Concentration 50% (LC(50)) and 536.04 microM Teratogenic Concentration 50% (TC(50)) from which a 1.11 Teratogenic Index (T.I.) has been calculated. This T.I. value should allow the classification of H(2)O(2) as a non-teratogenic compound. RESULTS: A comparison of H(2)O(2) mortality and malformed larva percents with those obtained from PQ exposure showed the higher embryotoxicity of PQ, but, markedly, both compounds mainly induced the "abnormal tail flexure." Histological analysis of both H(2)O(2) and PQ malformed embryo tails showed a similar distorted morphology of both somites and myocytes. Some of muscle cells were necrotic and affected by an apical enlargement as well as a detachment from the connective tissue of intersomitic boundaries. CONCLUSIONS: In our opinion, both of the tested chemicals likely weaken the mechanical bridge connecting the myocyte contractile apparatus to the extracellular matrix, therefore causing the detachment of some of tail myocytes from their connectival septum as well as their apical enlargement. This could lead to the unbalance of tail tensional forces and, in turn, to the appearance of the "abnormal tail flexure."  相似文献   
83.
The differential allocation hypothesis predicts that females should invest more in reproduction when paired with attractive males. We measured egg volume in Cape sugarbirds (Promerops cafer), a sexually dimorphic passerine, in relation to paternity of the offspring and in response to an experimental tail length treatment. We manipulated tail length, after pair formation, but before egg laying: males had their tails either shortened or left unmanipulated. Our manipulation was designed to affect female allocation in a particular breeding attempt rather than long‐term mate choice: males with shortened tails would appear to be signalling at a lower level than they should given their quality. We found that egg volume was smaller in the nests of males with experimentally shortened tails but larger when the offspring were the result of extra‐pair matings. Both these findings are consistent with the differential allocation hypothesis. We suggest that tail length may be used by females as a cue for mate quality, eliciting reduced female investment when breeding with social mates; and with males with shortened tails.  相似文献   
84.
Desert locusts show extreme phenotypic plasticity and can change reversibly between two phases that differ radically in morphology, physiology and behaviour. Solitarious locusts are cryptic in appearance and behaviour, walking slowly with the body held close to the ground. Gregarious locusts are conspicuous in appearance and much more active, walking rapidly with the body held well above the ground. During walking, the excursion of the femoro-tibial (F-T) joint of the hind leg is smaller in solitarious locusts, and the joint is kept more flexed throughout an entire step. Under open loop conditions, the slow extensor tibiae (SETi) motor neurone of solitarious locusts shows strong tonic activity that increases at more extended F-T angles. SETi of gregarious locusts by contrast showed little tonic activity. Simulated flexion of the F-T joint elicits resistance reflexes in SETi in both phases, but regardless of the initial and final position of the leg, the spiking rate of SETi during these reflexes was twice as great in solitarious compared to gregarious locusts. This increased sensory-motor gain in the neuronal networks controlling postural reflexes in solitarious locusts may be linked to the occurrence of pronounced behavioural catalepsy in this phase similar to other cryptic insects such as stick insects.  相似文献   
85.
Immunoglobulin (Ig)-like domains are found frequently on the surface of tailed double-stranded DNA bacteriophages, yet their functional role remains obscure. Here, we have investigated the structure and function of the C-terminal Ig-like domain of gpV (gpVC), the tail tube protein of phage λ. This domain has been predicted through sequence similarity to be a member of the bacterial Ig-like domain 2 (Big_2) family, which is composed of more than 1300 phage and bacterial sequences. Using trypsin proteolysis, we have delineated the boundaries of gpVC and have shown that its removal reduces the biological activity of gpV by 100-fold; thus providing a definitive demonstration of a functional role for this domain. Determination of the solution structure of gpVC by NMR spectroscopy showed that it adopts a canonical Ig-like fold of the I-set class. This represents the first structure of a phage-encoded Ig-like domain and only the second structure of a Big_2 domain. Structural and sequence comparisons indicate that the gpVC structure is more representative of both the phage-encoded Big_2 domains and Big_2 domains in general than the other available Big_2 structure. Bioinformatics analyses have identified two conserved clusters of residues on the surface of gpVC that may be important in mediating the function of this domain.  相似文献   
86.
We found that overexpression of tail interacting protein of 47 kDa (TIP47), but not its truncated form (t-TIP47) protected NIH3T3 cells from hydrogen-peroxide-induced cell death, prevented the hydrogen-peroxide-induced mitochondrial depolarization determined by 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethyl-benzimidazolylcarbocyanine iodide (JC1), while suppression of TIP47 in HeLa cells facilitated oxidative-stress-induced cell death. TIP47 was located to the cytoplasm of untreated cells, but some was associated to mitochondria in oxidative stress. Recombinant TIP47, but not t-TIP47 increased the mitochondrial membrane potential (Δψ), and partially prevented Ca2+ induced depolarization. It is assumed that TIP47 can bind to mitochondria in oxidative stress, and inhibit mitochondria mediated cell death by protecting mitochondrial membrane integrity.  相似文献   
87.
Genetic studies in Saccharomyces cerevisiae predict that the mismatch repair (MMR) factor MSH2-MSH3 binds and stabilizes branched recombination intermediates that form during single strand annealing and gene conversion. To test this model, we constructed a series of DNA substrates that are predicted to form during these recombination events. We show in an electrophoretic mobility shift assay that S. cerevisiae MSH2-MSH3 specifically binds branched DNA substrates containing 3' single-stranded DNA and that ATP stimulates its release from these substrates. Chemical footprinting analyses indicate that MSH2-MSH3 specifically binds at the double-strand/single-strand junction of branched substrates, alters its conformation and opens up the junction. Therefore, MSH2-MSH3 binding to its substrates creates a unique nucleoprotein structure that may signal downstream steps in repair that include interactions with MMR and nucleotide excision repair factors.  相似文献   
88.
Activation of “silent” efferent fibers due to stimulation of the mesenteric nerve within a definite frequency range is described; the effect is supposed to result from sensitization in reflex circles related to visceral pain. Neirofiziologiya/Neurophysiology, Vol. 38, No. 4, pp. 368–369, July–August, 2006.  相似文献   
89.
Body fragmentation, in some animal groups, is a mechanism for survival and asexual reproduction. Lumbriculus variegatus (Müller, 1774), an aquatic oligochaete worm, is capable of regenerating into complete individuals from small body fragments following injury and reproduces primarily by asexual reproduction. Few studies have determined the cellular mechanisms that underlie fragmentation, either regenerative or asexual. We utilized boric acid treatment, which blocks regeneration of segments in amputated fragments and blocks architomic fission during asexual reproduction, to investigate mechanistic relationships and differences between these two modes of development. Neural morphallaxis, involving changes in sensory fields and giant fiber conduction, was detected in amputated fragments in the absence of segmental regeneration. Furthermore, neural morphallactic changes occurred as a result of developmental mechanisms of asexual reproduction, even when architomy was prevented. These results show that fragmentation in L. variegatus, during injury or asexual reproduction, employs developmental and morphallactic processes that can be mechanistically dissociated by boric acid exposure. In regeneration following injury, compensatory morphallaxis occurred in response to fragmentation. In contrast, anticipatory morphallaxis was induced in preparation for fragmentation during asexual reproduction. Thus, various forms of regeneration in this lumbriculid worm can be activated independently and in different developmental contexts.  相似文献   
90.
To gain an understanding of the genes and mechanisms that govern morphogenesis and its evolution, we have analyzed mutations that disrupt this process in a simple model structure, the male tail tip of the rhabditid nematode C. elegans. During the evolution of rhabditid male tails, there have been several independent changes from tails with rounded tips ("peloderan", as in C. elegans) to those with pointed tips ("leptoderan"). Mutations which produce leptoderan (Lep) tails in C. elegans thus identify candidate genes and pathways in which evolutionary changes could have produced leptoderan tails from peloderan ancestors. Here we report that two novel, gain-of-function (gf) alleles of lin-41 have lesions predicted to affect the N-terminus of the RBCC-domain LIN-41 protein. Both gf alleles cause the tail tip of adult males to retain the pointed shape of the juvenile tails, producing a Lep phenotype that looks like the tails of leptoderan species. Consistent with its role in the heterochronic pathway, we find that lin-41 governs the timing and extent of male tail tip morphogenesis in a dose-dependent manner. Specifically, the Lep phenotype results from a heterochronic delay in the retraction and fusion of the tail tip cells during L4 morphogenesis, such that retraction is not completed before the adult molt. Conversely, we find that tail tip morphogenesis and cell fusions begin precociously at the L3 stage in the reduced-function lin-41 mutant, ma104, resulting in over-retracted male tails in the adult. Because modulated anti-LIN-41 RNAi knockdowns in the gf mutants restore wild-type phenotype, we suggest that the leptoderan phenotype of the gf alleles is due to a higher activity of otherwise normal LIN-41. Additionally, the gf allele is suppressed by the wild-type allele, suggesting that LIN-41 normally regulates itself, possibly by autoubiquitination. We speculate that small changes affecting LIN-41 could have been significant for male tail evolution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号