首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1283篇
  免费   36篇
  国内免费   49篇
  1368篇
  2023年   10篇
  2022年   27篇
  2021年   29篇
  2020年   17篇
  2019年   17篇
  2018年   32篇
  2017年   27篇
  2016年   23篇
  2015年   36篇
  2014年   83篇
  2013年   112篇
  2012年   83篇
  2011年   74篇
  2010年   71篇
  2009年   33篇
  2008年   75篇
  2007年   45篇
  2006年   44篇
  2005年   48篇
  2004年   38篇
  2003年   29篇
  2002年   31篇
  2001年   19篇
  2000年   13篇
  1999年   27篇
  1998年   23篇
  1997年   12篇
  1996年   21篇
  1995年   21篇
  1994年   14篇
  1993年   19篇
  1992年   8篇
  1991年   7篇
  1990年   13篇
  1989年   9篇
  1988年   11篇
  1987年   11篇
  1986年   14篇
  1985年   18篇
  1984年   23篇
  1983年   24篇
  1982年   24篇
  1981年   9篇
  1980年   7篇
  1979年   10篇
  1978年   6篇
  1976年   3篇
  1974年   2篇
  1973年   7篇
  1972年   3篇
排序方式: 共有1368条查询结果,搜索用时 15 毫秒
61.
We have recently demonstrated that alteration of the human immunodeficiency virus type 1 (HIV-1) Gag/Gag-Pol ratio in virus-producing cells reduces the infectivity of progeny viruses and hinders the formation of stable virion RNA dimers without impairing virion packaging of the viral genomic RNA. In addition, we have previously shown that the expression of GagPol mediates the selective packaging of tRNA Lys3 . In this study we report that overexpression of uncleaved GagPol in the virus-producing cell did not alter the packaging levels of tRNA Lys3 . Similarly, altering the virion-associated Gag/GagPol ratio did not affect the virion packaging of the HIV-1 envelope protein nor cyclophilin A. Thin section electron microscopy analysis of the cells overexpressing protease-defective [PR(-)] GagPol revealed immature virions but no mature virions. These immature virions were seen both extracellularly and in membrane-bound cytoplasmic vacuoles. Furthermore, an accumulation of electron-dense material was occasionally found at the plasma membrane and associated with intracytoplasmic membranous vacuoles in cells expressing excess PR(–) GagPol. No intracellular HIV was seen in the wild-type control. Density gradient analysis showed that the overall density of these mutant virions with excess PR(–) GagPol was identical to that of the wild-type HIV-1. The findings indicate that overexpression of PR(–) GagPol, in the presence of Gag synthesis, promotes intracellular budding of the mutant virions and inhibits virus maturation.  相似文献   
62.
Transfer RNA (tRNA) plays a role in stress response programs involved in various pathological conditions including neurological diseases. Under cell stress conditions, intracellular tRNA is cleaved by a specific ribonuclease, angiogenin, generating tRNA‐derived fragments or tRNA‐derived stress‐induced RNA (tiRNA). Generated tiRNA contributes to the cell stress response and has potential cell protective effects. However, tiRNA generation under stress conditions in neuronal cells has not been fully elucidated. To examine angiogenin‐mediated tiRNA generation in neuronal cells, we used the rat neuronal cell line, PC12, in combination with analysis of SYBR staining and immuno‐northern blotting using anti‐1‐methyladenosine antibody, which specifically and sensitively detects tiRNA. Oxidative stress induced by arsenite and hydrogen peroxide caused tRNA cleavage and tiRNA generation in PC12 cells. We also demonstrated that oxygen‐glucose deprivation, which is an in vitro model of ischemic–reperfusion injury, induced tRNA cleavage and tiRNA generation. In these stress conditions, the amount of generated tiRNA was associated with the degree of morphological cell damage. Time course analysis indicated that generation of tiRNA was prior to severe cell damage and cell death. Angiogenin over‐expression did not influence the amount of tiRNA in normal culture conditions; however, it significantly increased tiRNA generation induced by cell stress conditions. Our findings show that angiogenin‐mediated tiRNA generation can be induced in neuronal cells by different cell stressors, including ischemia–reperfusion. Additionally, detection of tiRNA could be used as a potential cell damage marker in neuronal cells.

Cover Image for this issue: doi: 10.1111/jnc.14191 .
  相似文献   
63.
Poly(A) polymerase has been purified to near homogeneity from the cytoplasm of Artemia salina as described previously (Roggen, E and Slegers, H. (1985) Eur. J. Biochem. 147, 225–232). Affinity chromatography on poly(A)-Sepharose 4B separates the enzyme preparation into two fractions. In standard assay conditions poly(A) polymerase fraction I (poly(A)-Sepharose 4B unbound) and fraction II (poly(A)-Sepharose 4B bound) have specific activities of 2.4 and 8.0 μmol AMP/h per mg enzyme, respectively. Poly(A) polymerase fraction II shows a high primer specificity towards the 17 S poly(A)-containing mRNP. Depending on the reaction conditions used, poly(A) sequences of 140 ± 15 AMP residues/μg enzyme are synthesized on the latter primer. In contrast, poly(A) polymerase fraction I only elongates oligo(A) primers efficiently. An endogenous RNA is detected in poly(A) polymerase II preparations. This RNA has a length of 83 ± 2 nucleotides and is a component of a 60 kDa particle. After removal of the latter the specificity of poly(A) polymerase fraction II for the 17 S poly(A)-containing mRNP is abolished and the characteristics of the enzyme resemble those of poly(A) polymerase I.  相似文献   
64.
In eubacterial and eukaryotic tRNAs specific for Asn, Asp, His and Tyr the modified deazaguanosinederivative queuosine occurs in position 34, the first position of the anticodon. Analysis of unfractionated tRNAs from wheat and from tobacco leaves shows that these tRNAs contain high amounts of guanosine (G) in place of queuosine (Q). This was measured by the exchange of G34 for [3H]guanine catalysed by the specific tRNA guanine transglycosylase from E. coli. Upon gel electrophoretic separation of the labeled tRNAs, seven Q-deficient tRNA species including isoacceptors are detectable. Two are identified as cytoplasmic tRNAsTyr and tRNAAsp and two represent chloroplast tRNATyr isoacceptors. In contrast to leaf cytoplasm and chloroplasts, wheat germ has low amounts of tRNAs with G34 in place of Q.A new enzymatic assay is described for quantitation of free queuine in cells and tissues. Analysis of queuine in plant tissues shows that wheat germ contains about 200 ng queuine per g wet weight. In wheat and tobacco leaves queuine is present, if at all, in amounts lower than 10 ng/g wet weight. The absence of Q in tRNAs from plant leaves is therefore caused by a deficiency of queuine. Tobacco cells cultivated in a synthetic medium without added queuine do not contain Q in tRNA, indicating that these rapidly growing cells do not synthesize queuine de novo.  相似文献   
65.
In the ribosome-independent biosynthesis of peptide natural products, amino acid building blocks are generally activated in the form of phosphoesters, esters, or thioesters prior to amide bond formation. Following the recent discovery of bacterial enzymes that utilize an aminoacyl ester with a transfer ribonucleic acid (tRNA) in primary metabolism, the number of tRNA-dependent enzymes used in biosynthetic studies of peptide natural products has increased steadily. In this review, we summarize the rapidly growing knowledge base regarding two types of tRNA-dependent enzymes, which are structurally and functionally distinct. Initially, we focus on enzymes with the GCN5-related N-acetyltransferase fold and discuss the catalytic function and aminoacyl-tRNA recognition. Next, newly found peptide-amino acyl tRNA ligases and their ATP-dependent reactions are highlighted.  相似文献   
66.
During early oogenesis in amphibia, most of the 5 S RNA and tRNA is stored in a ribonucleoprotein particle that sediments at 42 S. In Xenopus laevis the 42 S particle contains two major proteins: of Mr 48 000 (P48) and 43 000 (P43). It is shown that heterogeneity in composition of the 42 S particle reflects a changing situation whereby initially, both 5 S RNA and tRNA are complexed with P48 (1 molecule 5 S RNA: 1 molecule P48; 2 or 3 molecules tRNA: 1 molecule P48), but later, tRNA becomes increasingly associated with P43 (in a 1:1 ratio) although 5 S RNA remains complexed with a cleavage product of P48. These changes relate to the eventual utilization of the excess 5 S RNA and tRNA in ribosome assembly and protein synthesis.  相似文献   
67.
Transfer RNAs have been prepared from control and regenerating rat skeletal muscle. The yield of tRNA is highest during the early stages of the regeneration process (5 and 8 days following the induction of regeneration) and decreases to near control values thereafter. The amino acid acceptor activity (extent of aminoacylation) of tRNA from regenerating muscle was also found to be higher for some amino acids than the activity of control tRNA, and the maximum increase in activity was observed between 5 and 8 days following the initiation of regeneration with a decrease to control levels through 15 and 30 days. The isoacceptor pattern, determined by RPC-5 chromatography, for methionyl-tRNAs from control muscle and 5-day regenerating muscle were essentially indistinguishable, while a minor peak of prolyl-tRNA was observed in the population from 5-, 8- and 15-day regenerates which was apparently absent from the control tRNA. Lysyl-tRNAs from control muscle contain two major isoacceptors while a third isoacceptor is observed in the tRNA preparations from 5-, 8- and 15-day regenerating muscle. The relative amount of this third isoacceptor is highest in the 8-day population and decreases in amount in tRNAs from 15- and 30-day regenerates. Control muscle also contains two major glutamyl-tRNA species while a third isoacceptor can be detected in regenerates. The relative amount of this species increases during the early course of the regeneration process but is present at near control levels by 30 days following Marcaine injection. Cell-free protein synthesis using muscle polyribosomes showed that tRNAs from regenerating muscle were more effective in stimulating [35S]methionine incorporation than tRNAs from control muscle.  相似文献   
68.
A procedure is presented for refinement of a homology model of E. coli tRNAVal, originally based on the X-ray structure of yeast tRNAPhe, using experimental residual dipolar coupling (RDC) and small angle X-ray scattering (SAXS) data. A spherical sampling algorithm is described for refinement against SAXS data that does not require a globbic approximation, which is particularly important for nucleic acids where such approximations are less appropriate. Substantially higher speed of the algorithm also makes its application favorable for proteins. In addition to the SAXS data, the structure refinement employed a sparse set of NMR data consisting of 24 imino N–HN RDCs measured with Pf1 phage alignment, and 20 imino N–HN RDCs obtained from magnetic field dependent alignment of tRNAVal. The refinement strategy aims to largely retain the local geometry of the 58% identical tRNAPhe by ensuring that the atomic coordinates for short, overlapping segments of the ribose-phosphate backbone and the conserved base pairs remain close to those of the starting model. Local coordinate restraints are enforced using the non-crystallographic symmetry (NCS) term in the XPLOR-NIH or CNS software package, while still permitting modest movements of adjacent segments. The RDCs mainly drive the relative orientation of the helical arms, whereas the SAXS restraints ensure an overall molecular shape compatible with experimental scattering data. The resulting structure exhibits good cross-validation statistics (jack-knifed Q free = 14% for the Pf1 RDCs, compared to 25% for the starting model) and exhibits a larger angle between the two helical arms than observed in the X-ray structure of tRNAPhe, in agreement with previous NMR-based tRNAVal models. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
69.
There exists a significant difference in pre-tRNA preference among prokaryotic tRNase Zs. This is an enigma, because pre-tRNAs should form the common L-shaped structure and tRNase Zs should form the common structure based on the alphabeta/betaalpha-fold. To address this issue, we examined six different eubacterial and archaeal tRNase Zs including two newly isolated tRNase Zs for cleavage of 18 different pre-tRNA substrates. Two Thermotoga maritima, one Thermus thermophilus, one Bacillus subtilis, one Thermoplasma acidophilum, and one Pyrobaculum aerophilum enzymes were tested. To our surprise, the newly isolated proteins T. maritima and T. thermophilus showed the weak tRNase Z activity, even though their primary amino acid sequences are, on the whole, quite different from those of the typical tRNase Zs. We confirmed that substrate recognition ability is quite different among those tRNase Zs. In addition, we found that the optimal conditions as a whole differ significantly among the enzymes. From these results, we provided several clues to solve the enigma by showing the potential importance of the 74th-76th nucleotide sequence of pre-tRNA, the flexible arm length of tRNase Z, the divalent metal ion species, and the histidine corresponding His222 in T. maritima tRNase Z.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号